【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1 , 作第1個正方形A1B1C1C;延長C1B1交x軸于點A2 , 作第2個正方形A2B2C2C1 , …,按這樣的規(guī)律進行下去,第2016個正方形的面積是

【答案】5×( 4030
【解析】解:∵點A的坐標為(1,0),點D的坐標為(0,2), ∴OA=1,OD=2,BC=AB=AD=
∵正方形ABCD,正方形A1B1C1C,
∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,
∴∠A1AB=∠ADO,
∵∠AOD=∠A1BA=90°,
∴△AOD∽△A1BA,

,
∴A1B=
∴A1B1=A1C=A1B+BC= ,
同理可得,A2B2= =( 2 ,
同理可得,A3B3=( 3 ,
同理可得,A2015B2015=( 2015 ,
∴S2016個正方形的面積=S正方形C2015C2015B2015A2015=[( 2015 ]2=5×( 4030 ,
故答案為5×( 4030
先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B= ,A2B2=( 2 ,找出規(guī)律A2015B2015=( 2015 ,即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=ax與反比例函數(shù)y= (x>0)的圖象交于點M( , ).

(1)求這兩個函數(shù)的表達式;
(2)如圖1,若∠AMB=90°,且其兩邊分別于兩坐標軸的正半軸交于點A、B.求四邊形OAMB的面積.
(3)如圖2,點P是反比例函數(shù)y= (x>0)的圖象上一點,過點P作x軸、y軸的垂線,垂足分別為E、F,PF交直線OM于點H,過作x軸的垂線,垂足為G.設點P的橫坐標為m,當m> 時,是否存在點P,使得四邊形PEGH為正方形?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三位同學用質(zhì)地、大小完全一樣的紙片分別制作一張卡片a、b、c,收集后放在一個不透明的箱子中,然后每人從箱子中隨機抽取一張.
(1)用列表或畫樹狀圖的方法表示三位同學抽到卡片的所有可能的結果;
(2)求三位同學中至少有一人抽到自己制作卡片的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,有兩個相等實數(shù)根的方程是(
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邵陽市到長沙的高鐵列車里程比普快列車里程縮短了75千米,運行時間減少了4小時,已知邵陽市到長沙的普快列車里程為306千米,高鐵列車平均時速是普快列車平均時速的3.5倍.
(1)求高鐵列車的平均時速;
(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸為直線x=1,給出下列結論:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
則正確的結論個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.

(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段CM與CN的數(shù)量關系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點,AC=4,BC=2,將△ACD沿直線CD折疊,點A落在點E處,聯(lián)結AE,那么線段AE的長度等于

查看答案和解析>>

同步練習冊答案