【題目】如圖(1),在平面直角坐標系x Oy,直線y=2x+4y軸交于點A,x軸交于點B,拋物線C1:y=x2+bx+cA,B兩點,與x軸的另一交點為點C.

(1)求拋物線C1的解析式及點C的坐標;

(2)如圖(2),作拋物線C2,使得拋物線C2C1恰好關(guān)于原點對稱,C2C1在第一象限內(nèi)交于點D,連接ADCD,請直接寫出拋物線C2的解析式和點D的坐標.

(3)已知拋物線C2的頂點為M,設(shè)P為拋物線C1對稱軸上一點,Q為直線y=2x+4上一點,是否存在以點M,Q,P,B為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

【答案】1y=x2+x+4,C8,0);

2y=x2+x-4,D4,6);

3)(3)或(3,);

【解析】

1)先求出直線y=2x+4x軸、y軸交點坐標,待定系數(shù)法求拋物線解析式即可;

2)根據(jù)兩拋物線關(guān)于原點對稱,將拋物線C1的解析式中的xy分別換成-x-y,整理后即為拋物線C2的解析式;再通過解方程組求點D的坐標;

3)過BBNy軸,過MMNx軸與BN交于點N,分兩種情形分別求點P的坐標:①BM為平行四邊形的邊,②BM為平行四邊形的對角線.

1)∵直線y=2x+4y軸交于點A,與x軸交于點B,∴A0,4),B-2,0),

∵拋物線C1y=-x2+bx+cAB兩點,

c=4,0=-×-22-2b+4,解得b=

∴拋物線C1的解析式為:y=-x2+x+4

y=0,得-x2+x+4=0,解得x1=-2,x2=8

C8,0);

2)∵拋物線C2C1恰好關(guān)于原點對稱,

∴拋物線C2的解析式為y=x2+x-4,

解方程組得:,

∵點D在第一象限內(nèi),

D4,6);

3)存在.

BBNy軸,過MMNx軸與BN交于點N,

∵拋物線C2的解析式為y=x2+x-4= (x+3)2-

∴頂點M-3,-),

BN=MN=1

拋物線C1的對稱軸為:直線x=3,設(shè)P3,m

①以點MQ,PB為頂點的四邊形為平行四邊形,若MQ為對角線,則BMPQ,BM=PQ

Q4,m+),

又∵Q為直線y=2x+4上一點,

m+=2×4+4,解得:m=

P3);

②若BM為對角線,設(shè)P3m),Qn2n+4),

BM中點坐標為(-,

,解得,

P3,),

③若BQ為對角線,∵BMPQ,BM=PQ,∴Q28),設(shè)P3m),

m-=8+0,解得:m=,

P3,

綜上所述,存在以點MQ,P,B為頂點的四邊形為平行四邊形,點P的坐標為P3,)或P3,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF

2)若CE8,CF6,求OC的長;

3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答下列問題.

(1)問:依據(jù)規(guī)律在第6個圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;

(2)某新學(xué)校教室要裝修,每間教室面積為68m2 , 準備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進行裝修,瓷磚無須切割,恰好完成鋪設(shè).已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Ax1,y1),Bx2,y2)是二次函數(shù)上y=ax2-2ax+a-ca≠0)的兩點,若x1≠x2,且y1=y2,則當 自變量x的值取x1+x2時,函數(shù)值為(

A. -cB. cC. -a+cD. a-c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊老師為了了解所教班級學(xué)生課后復(fù)習(xí)的具體情況,對本班部分學(xué)生進行了一個月的跟蹤調(diào)查,然后將調(diào)查結(jié)果分成四類:A:優(yōu)秀;B:良好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖解答下列問題:

(1)本次調(diào)查中,楊老師一共調(diào)查了   名學(xué)生,其中C類女生有   名,D類男生有   名;

(2)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)在此次調(diào)查中,小平屬于D類.為了進步,她請楊老師從被調(diào)查的A類學(xué)生中隨機選取一位同學(xué),和她進行一幫一的課后互助學(xué)習(xí).請求出所選的同學(xué)恰好是一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC6cm,射線AGBC,點E從點A出發(fā)沿射線AG1cm/s的速度運動,點F從點B出發(fā)沿射線BC2cm/s的速度運動.如果點EF同時出發(fā),設(shè)運動時間為t(s)t______s時,以A、C、E、F為頂點四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,邊ABBC的長(ABBC)是方程x2﹣7x+12=0的兩個根.點P從點A出發(fā),以每秒1個單位的速度沿△ABCA→B→C→A的方向運動,運動時間為t(秒).

1)求ABBC的長;

2)當點P運動到邊BC上時,試求出使AP長為時運動時間t的值;

3)當點P運動到邊AC上時,是否存在點P,使△CDP是等腰三角形?若存在,請求出運動時間t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax+bx+cx軸的兩個交點為B1,0)和C,與y軸的交點坐標為(0,-1.5)且此拋物線過點A3,6.

1)求此二次函數(shù)的解析式;

2)設(shè)此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標.

查看答案和解析>>

同步練習(xí)冊答案