已知如圖,CD平分∠ACB,CB⊥AB于B,O點(diǎn)在AC上,圓O過D點(diǎn),求證:AB與圓O相切.

證明:連接OD,
∵OD=OC,
∴∠ODC=∠OCD,
∵CD平分∠ACB,
∴∠BCD=∠OCD,
∴∠ODC=∠BCD,
∴ODBC,
∵CB⊥AB,
∴OD⊥AB,
∵OD過O,
∴AB與圓O相切.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,且AB為6,過B點(diǎn)作⊙O的切線CB與⊙O相切于點(diǎn)B,在半圓AB上有一點(diǎn)D使∠ABD=30°,BD的中點(diǎn)為E,連接OE并延長OE與BC交于點(diǎn)C,連接CD.
(1)求證:CD是⊙O的切線.
(2)四邊形ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PT切⊙O于點(diǎn)T,經(jīng)過圓心O的割線PAB交⊙O于點(diǎn)A、B,已知PT=4,∠P=30°,則⊙O的直徑AB等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)O為Rt△ABC斜邊上一點(diǎn),以點(diǎn)O為圓心,OA長為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)當(dāng)AE=EC,AC=3時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD內(nèi)接于⊙O,BD為⊙O直徑,將△BCD沿BD所在的直線翻折后,得到點(diǎn)C的對應(yīng)點(diǎn)N仍在⊙O上,BN交AD與點(diǎn)M.若∠AMB=60°,⊙O的半徑是3cm.
(1)求點(diǎn)O到線段ND的距離;
(2)過點(diǎn)A作BN的平行線EF,判斷直線EF與⊙O的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是⊙O的弦,AE交⊙O于點(diǎn)E,且AE⊥CP于點(diǎn)D,且AC平分∠DAB.
(1)求證:直線CP與⊙O相切.
(2)若AB=10,∠CAB=30°,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,⊙M與x軸相交于點(diǎn)A(2,0),B(8,0),與y軸相切于點(diǎn)C,則圓心M的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,求點(diǎn)A到CD所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓的半徑是方程x2-8x+12=0兩實(shí)數(shù)根,圓心距為9,那么這兩個(gè)圓的位置關(guān)系是( 。
A.內(nèi)切B.相交C.外離D.外切

查看答案和解析>>

同步練習(xí)冊答案