如圖,已知點O為Rt△ABC斜邊上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點E,與AC相交于點D,連接AE.
(1)求證:AE平分∠CAB;
(2)當AE=EC,AC=3時,求⊙O的半徑.
(1)證明:連接OE,
∵⊙O與BC相切于點E,
∴OE⊥BC,
∵AB⊥BC,
∴ABOE,
∴∠2=∠AEO.
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB;

(2)由(1)知,∠1=∠2、
∵AE=EC,
∴∠1=∠C.
∴∠1+∠2+∠C=3∠C=90°,
∴∠C=30°,
∴OE=
1
2
OC,即OE=
1
2
(3-OE),
解得,OE=1,即該圓的半徑是1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線MN經(jīng)過⊙O上的點A,點B在MN上,連OB交⊙O于C點,且點C是OB的中點,AC=
1
2
OB,若點P是⊙O上的一個動點,當AB=2
3
時,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線MA交⊙O于A、B兩點,BC是⊙O的直徑,點D在⊙O上,且BD平分∠MBC,過D作DE⊥MA,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DE+BE=12,⊙O的直徑是20,求AB和BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長線交BC于E,若∠C=20°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:z圖,AB是⊙了的直徑,Ah是弦,∠BAh的平分線與⊙了的交點為D,DE⊥Ah,與Ah的延長線交于點E.
(1)求證:直線DE是⊙了的切線;
(2)若了E與AD交于點u,h了s∠BAh=
4
5
,求
Du
Au
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,圓上有B,C兩點,PB,PC為圓的兩切線.若
BC
將圓分成兩弧,且其中一弧的長為圓周長的
1
10
,則∠BPC的度數(shù)為( 。
A.108B.120C.144D.162

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,CD平分∠ACB,CB⊥AB于B,O點在AC上,圓O過D點,求證:AB與圓O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC的中點D在⊙O上,DE⊥BC于E.
(1)求證:DE是⊙O的切線;
(2)若CE=3,∠A=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△AOB中,∠AOB=90°,OA=OB=2
2
,以點O為圓心的圓與AB相切于點C,則圖中陰影部分的面積是______.

查看答案和解析>>

同步練習冊答案