【題目】如圖,⊙O的直徑AB與弦CD相交于點(diǎn)E,若AE=5,BE=1,CD=4,則∠AED=____.
【答案】30°
【解析】試題分析:連接OD,過(guò)圓心O作OH⊥CD于點(diǎn)H.根據(jù)垂徑定理求得DH=CH=;然后根據(jù)已知條件“AE=5,BE=1”求得⊙O的直徑AB=6,從而知⊙O的半徑OD=3,OE=2;最后利用勾股定理求得OH=1,再由30°角所對(duì)的直角邊是斜邊的一半來(lái)求∠AED.解:連接OD,過(guò)圓心O作OH⊥CD于點(diǎn)H.∴DH=CH=又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半徑);∴OE=2;∴在Rt△ODH中,OH=1(勾股定理);在Rt△OEH中,OH=∴∠OEH=30°,即∠AED=30°.故答案是:30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=12,點(diǎn)C,D在AB上,且AC=DB=2,點(diǎn)P從點(diǎn)C沿線段CD向點(diǎn)D運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)D停止),以AP、BP為斜邊在AB的同側(cè)畫等腰Rt△APE和等腰Rt△PBF,連接EF,取EF的中點(diǎn)G,①△EFP的外接圓的圓心為點(diǎn)G;②四邊形AEFB的面積不變;③EF的中點(diǎn)G移動(dòng)的路徑長(zhǎng)為4;④△EFP的面積的最小值為8.以上說(shuō)法中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你吃過(guò)拉面嗎?實(shí)際上在做拉面的過(guò)程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)四面條的粗細(xì)(橫截面積)S(mm2)的反比例函數(shù),其圖象如圖所示.
(1)寫出y與S的函數(shù)關(guān)系式;
(2)求當(dāng)面條粗1.6 mm2時(shí),面條的總長(zhǎng)度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在長(zhǎng)方形中,,.延長(zhǎng)到點(diǎn),使,連接,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿向終點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,當(dāng)的值為___________時(shí),和全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,,E為BD中點(diǎn),延長(zhǎng)CD到點(diǎn)F,使.
求證:
求證:四邊形ABDF為平行四邊形
若,,,求四邊形ABDF的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一拱橋所在弧所對(duì)的圓心角為120°(即∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB高2 m,問(wèn)此船能過(guò)橋洞嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由一些大小相同的小正方體組成的簡(jiǎn)單幾何體的主視圖和俯視圖如圖29-29所示.
(1)請(qǐng)你畫出這個(gè)幾何體的一種左視圖.
(2)若組成這個(gè)幾何體的小正方體的塊數(shù)為n,請(qǐng)你寫出n的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料后解決問(wèn)題:
小明遇到下面一個(gè)問(wèn)題:
計(jì)算(2+1)(22+1)(24+1)(28+1).
經(jīng)過(guò)觀察,小明發(fā)現(xiàn)如果將原式進(jìn)行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進(jìn)而可以應(yīng)用平方差公式解決問(wèn)題,具體解法如下:(2+1)(22+1)(24+1)(28+1)
=(2+1)(2﹣1)(22+1)(24+1)(28+1)
=(22﹣1)(22+1)(24+1)(28+1)
=(24﹣1)(24+1)(28+1)
=(28﹣1)(28+1)
=216﹣1
請(qǐng)你根據(jù)小明解決問(wèn)題的方法,試著解決以下的問(wèn)題:
(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.
(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.
(3)化簡(jiǎn):(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AE⊥BC于點(diǎn)E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度數(shù);
(2)求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com