【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C1,0),BCAC

1)求過點(diǎn)A,B的直線的函數(shù)表達(dá)式;

2)在x軸上找一點(diǎn)D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);

3)在(2)的條件下,如PQ分別是ABAD上的動(dòng)點(diǎn),連接PQ,設(shè)APDQm,問是否存在這樣的m,使得△APQ與△ADB相似?如存在,請(qǐng)求出m的值;如不存在,請(qǐng)說明理由.

【答案】1yx+;(2D點(diǎn)位置見解析,D,0);(3)符合要求的m的值為

【解析】

1)先根據(jù)A31),C10),求出AC進(jìn)而得出BC3求出B點(diǎn)坐標(biāo),利用待定系數(shù)法求出直線AB的解析式即可;

2)運(yùn)用相似三角形的性質(zhì)就可求出點(diǎn)D的坐標(biāo);

3)由于APQADB已有一組公共角相等,只需分APQ∽△ABDAPQ∽△ADB兩種情況討論,然后運(yùn)用相似三角形的性質(zhì)建立關(guān)于m的方程,就可解決問題.

解:(1)∵A(﹣3,0),C1,0),

AC4

BCAC,

BC×43,

B13),

設(shè)直線AB的解析式為ykx+b,

,

,

∴直線AB的解析式為yx+;

2)若ADBABC相似,過點(diǎn)BBDABx軸于D,

∴∠ABD=∠ACB90°,如圖1,

此時(shí),即AB2ACAD

∵∠ACB90°AC4,BC3,

AB5,

254AD

AD,

ODADAO3

∴點(diǎn)D的坐標(biāo)為(,0);

3)∵APDQm

AQADQDm

Ⅰ、若APQ∽△ABD,如圖2,

則有,

APADABAQ

m5m),

解得m

Ⅱ、若APQ∽△ADB,如圖3

則有,

APABADAQ,

5mm),

解得:m,

綜上所述:符合要求的m的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于鈍角α,定義它的三角函數(shù)值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及A和B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:

x

1

0

1

2

3

y

m

5

2

1

2

m的值是_____,當(dāng)y5時(shí),x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,OAC中點(diǎn),EFO點(diǎn)且EFAC分別交DCF,交ABE,若點(diǎn)GAE中點(diǎn)且∠AOG30°,則下列結(jié)論正確的個(gè)數(shù)為( 。

1OGE是等邊三角形;(2DC3OG;(3OGBC;(4SAOES矩形ABCD

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣12)、B2,1)、C4,5).

1)畫出ABC關(guān)于x對(duì)稱的A1B1C1;

2)以原點(diǎn)O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折紙是一項(xiàng)有趣的活動(dòng),在折紙過程中,我們可以通過研究圖形的性質(zhì)和運(yùn)動(dòng),確定圖形位置等,進(jìn)一步發(fā)展空間觀念. 今天,就讓我們帶著數(shù)學(xué)的眼光來玩一玩折紙.

實(shí)踐操作

如圖1,將矩形紙片ABCD沿對(duì)角線AC翻折,使點(diǎn)落在矩形ABCD所在平面內(nèi),CAD相交于點(diǎn)E,連接D.

解決問題

1)在圖1中,①DAC的位置關(guān)系是_____;②將AEC剪下后展開,得到的圖形是____;

2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(AB≠BC),如圖2所示,結(jié)論①和結(jié)論②是否成立,若成立,請(qǐng)?zhí)暨x其中的一個(gè)結(jié)論加以證明;若不成立,請(qǐng)說明理由;

拓展應(yīng)用

3)在圖2中,若∠B=30oAB=,當(dāng)AAD時(shí),BC的長(zhǎng)度為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2k+1x+k220

1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;

2)若方程的兩個(gè)實(shí)數(shù)根為x1x2,且滿足x12+x2211,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角ABC中,ABAC,邊BC長(zhǎng)為6,高AD長(zhǎng)為4,正方形PQMN的兩個(gè)頂點(diǎn)在ABC一邊上,另兩個(gè)頂點(diǎn)分別在ABC的另兩邊上,則正方形PQMN的邊長(zhǎng)為( 。

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案