如圖(1),將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為________.
∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E1邊長的,
∴正六角星形A2F2B2D2C2E2面積是正六角星形AFBDCE面積的.
同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形AFBDCE邊長的
∴正六角星形A4F4B4D4C4E4面積是正六角星形AFBDCE面積的.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;
(2)若EG·BG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連結(jié)PQ。若設(shè)運動時間為t(s)(0<t<2),解答下列問題:

(1)當t為何值時?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時刻t,使線段PQ恰好把△ABC的周長和面積同時平分?若存在求出此時t的值;若不存在,說明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時刻t,使四邊形PQP'C為菱形?若存在求出此時t的值;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,以對角線BD為一邊構(gòu)造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.

(1)設(shè)Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1      S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

△ABC與△DEF的相似比為3:4,則△ABC與△DEF的周長的比為(    )
A.3:4B.4:3C.9:16D.16:9

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( 。
A.(6,0)B.(6,3)
C.(6,5)D.(4,2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知△ABC與△DEF相似且面積比為4∶25,則△ABC與△DEF的相似比為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3,若點A′的坐標為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一張矩形報紙ABCD的長AB=a,寬BC=b,E,F分別是AB,CD的中點,將這張報紙沿著直線EF對折后,矩形AEFD的長與寬的比等于矩形ABCD的長與寬的比,則a:b等于(           )
A.B.C.D.

查看答案和解析>>

同步練習冊答案