【題目】如圖,將邊長為 的正方形ABCD沿對角線AC平移,使點A移至線段AC的中點A′處,得新正方形A′B′C′D′,新正方形與原正方形重疊部分(圖中陰影部分)的面積是(
A.
B.
C.1
D.

【答案】B
【解析】解:∵正方形ABCD的邊長為 , ∴AC=2,
又∵點A′是線段AC的中點,
∴A′C=1,
∴S陰影= ×1×1=
故選B.
【考點精析】認真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形),還要掌握平移的性質(zhì)(①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將正方形紙片ABCD對折,使AB與CD重合,折痕為EF.如圖2,展開后再折疊一次,使點C與點E重合,折痕為GH,點B的對應(yīng)點為點M,EM交AB于N.若AD=2,則MN=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y= ,下列說法正確的是(
A.圖象經(jīng)過點(1,﹣1)
B.圖象位于第二、四象限
C.圖象是中心對稱圖形
D.當x<0時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F.
(1)若AC=6,AB=10,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】徐州至上海的鐵路里程為650km.從徐州乘“C”字頭列車A,“D”字頭列車B都可到達上海,已知A車的平均速度為B車的2倍,且行駛時間比B車少2.5h.
(1)設(shè)A車的平均速度是xkm/h,根據(jù)題意,可列分式方程:
(2)求A車的平均速度及行駛時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是(
A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直接寫出結(jié)果

(1)﹣_____;

(2)5.4﹣(﹣3.6)=_____;

(3)_____;

(4)÷(﹣5)=_____;

(5)(﹣8)×(﹣0.5)=_____;

(6)(﹣1)2014﹣|﹣1|=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】 已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最?最小值是多少?
【數(shù)學模型】
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+ )(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+ (x>0)的圖象和性質(zhì). ①填寫下表,畫出函數(shù)的圖象;

x

1

2

3

4

y

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+ (x>0)的最小值.
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

同步練習冊答案