【題目】列方程解應用題:
甲列車從A地開往B地,每小時行駛60千米,乙列車同時從B地開往A地,每小時行駛90千米.已知A,B兩地相距200km.
(1)經(jīng)過多長時間兩車相遇;
(2)兩車相遇的地方離A地多遠?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿著A→B→C→D路徑勻速運動到點D,設△PAD的面積為y,P點的運動時間為x,則y關于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在一次課外活動中,用硬紙片做了兩個直角三角形,見圖①、②.在圖①中,∠B=90°,∠A=30°;圖②中,∠D=90°,∠F=45°.圖③是該同學所做的一個實驗:他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動.在移動過程中,D、E兩點始終在AC邊上(移動開始時點D與點A重合).
(1)在△DEF沿AC方向移動的過程中,該同學發(fā)現(xiàn):F、C兩點間的距離逐漸 ;連接FC,∠FCE的度數(shù)逐漸 .(填“不變”、“變大”或“變小”)
(2)△DEF在移動的過程中,∠FCE與∠CFE度數(shù)之和是否為定值,請加以說明;
(3)能否將△DEF移動至某位置,使F、C的連線與AB平行?若能,求出∠CFE的度數(shù);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在4個均由16個小正方形組成的網(wǎng)格正方形中,各有一個格點三角形,那么這4個正方形中,與眾不同的是_________,不同之處:______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據(jù)實際情況,作出如圖所示圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學分別測量出以下四組數(shù)據(jù),根據(jù)所測數(shù)據(jù)不能求出A,B間距離的是( )
A.BC,∠ACB
B.DE,DC,BC
C.EF,DE,BD
D.CD,∠ACB,∠ADB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板EFG測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊EG保持水平,并且邊EF所在的直線經(jīng)過點A.已知紙板的兩條直角邊EF=60cm,F(xiàn)G=30cm,測得小剛與樹的水平距離BD=8m,邊EG離地面的高度DE=1.6m,則樹的高度AB等于( )
A.5m
B.5.5m
C.5.6m
D.5.8m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,CD⊥AB于D.
(1)圖中有幾個直角三角形;
(2)若AD=12,AC=13,則CD等于多少;
(3)若CD2=AD·DB, 求證:△ABC是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. ① ② B. ① ② ④ C. ① ③ ④ D. ① ② ③ ④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com