【題目】如圖,已知∠AOB=60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為EF,且EF=6,則平移的距離為( 。

A. 2 B. 26 C. 46 D. 15

【答案】B

【解析】

本題分圓心MOA的左邊和右邊兩種情況求解即可.

當(dāng)將⊙M水平向左平移,當(dāng)點(diǎn)M運(yùn)動(dòng)到M′位置時(shí),如圖1:

MC⊥OAC點(diǎn),M′H⊥OAH,M′Q⊥MCQ,連結(jié)M′E,

∵⊙M與邊OB、OA相切,

∴MM′∥OB,MC=2,

∵M(jìn)′H⊥OA,

∴EH=FH=EF=×6=3,

Rt△EHM′中,EM′=2,

∴HM′== ,

∵M(jìn)′Q⊥MC,

∴四邊形M′QCH為矩形,

∴CQ=M′H=

∴MQ=2-=,

∵∠QM′M=∠AOB=60°,

∴∠QM′M=30°,

∴M′Q=MQ=1,

∴MM′=2;

當(dāng)將⊙M水平向左平移,當(dāng)點(diǎn)M運(yùn)動(dòng)到M″位置時(shí),如圖2,

MC⊥OAC點(diǎn),M″H⊥OAH,M″MOAD點(diǎn),

易得MC=2,M″H=,

∵∠MDC=∠M″DH=∠AOB=60°,

∴∠HM″D=30°,∠CMD=30°,

Rt△CDM中,CM=2,則DC=2, DM=4,

Rt△HM″D中,M″H =,則DH=1,M″D=2,

∴MM″= DM+ M″D =4+2=6,

綜上所述,當(dāng)⊙M平移的距離為26.故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)經(jīng)銷一種商品,已知其每件進(jìn)價(jià)為40元,F(xiàn)在每件售價(jià)為70元,每星期可賣出500件。該商場(chǎng)通過市場(chǎng)調(diào)查發(fā)現(xiàn):若每件漲價(jià)1元,則每星期少賣出10件;若每件降價(jià)1元,則每星期多賣出mm為正整數(shù))件。設(shè)調(diào)查價(jià)格后每星期的銷售利潤(rùn)為W元。

(1)設(shè)該商品每件漲價(jià)xx為正整數(shù))元,

①若x=5,則每星期可賣出____件,每星期的銷售利潤(rùn)為_____元;

②當(dāng)x為何值時(shí),W最大,W的最大值是多少。

(2)設(shè)該商品每件降價(jià)yy為正整數(shù))元,

①寫出WY的函數(shù)關(guān)系式,并通過計(jì)算判斷:當(dāng)m=10時(shí)每星期銷售利潤(rùn)能否達(dá)到(1)中W的最大值;

②若使y=10時(shí),每星期的銷售利潤(rùn)W最大,直接寫出W的最大值為_____。

(3)若每件降價(jià)5元時(shí)的每星期銷售利潤(rùn),不低于每件漲價(jià)15元時(shí)的每星期銷售利潤(rùn),求m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)圓錐的高為cm,側(cè)面展開圖是半圓.

求:(1)圓錐的母線長(zhǎng)與底面半徑之比;

2)求∠BAC的度數(shù);

3)圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船沿正南方向以30海里/時(shí)的速度勻速航行,M處觀測(cè)到燈塔P在南偏西22°方向上航行2小時(shí)后到達(dá)N,觀測(cè)燈塔P在南偏西44°方向上若該船繼續(xù)向南航行至離燈塔最近的位置,則此時(shí)輪船離燈塔的距離約為(參考數(shù)據(jù):sin68°0.9272,sin46°0.7193,sin22°0.3746,sin44°0.6947)(  )

A. 22.48海里 B. 41.68海里

C. 43.16海里 D. 55.63海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

小凱遇到這樣一個(gè)問題:如圖①,在四邊形ABCD對(duì)角線AC,BD相交于點(diǎn)O,AC=4,BD=6,AOB=30°,求四邊形ABCD的面積小凱發(fā)現(xiàn),分別過點(diǎn)A,C作直線BD的垂線,垂足分別為E,F(xiàn),設(shè)AOm,通過計(jì)算△ABD與△BCD的面積和可以使問題得到解決(如圖②).請(qǐng)回答:

(1)ABD的面積為________(用含m的式子表示);

(2)求四邊形ABCD的面積

參考小凱思考問題的方法,解決問題:

如圖③,在四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,AC=a,BD=b,AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,CFACAB的延長(zhǎng)線于點(diǎn)F,GBC的中點(diǎn),射線AGCFD,ECF上,CEAD,連接BD,BE.求證:BDE是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方程x2﹣3x+2=0的解是   

(2)有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A,B都被分成了3等份,并在每一份內(nèi)均標(biāo)有數(shù)字,如圖所示,規(guī)則如下:①分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤A,B;②兩個(gè)轉(zhuǎn)盤停止后,觀察兩個(gè)指針?biāo)阜輧?nèi)的數(shù)字(若指針停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).用列表法(或樹狀圖)分別求出兩個(gè)指針?biāo)傅臄?shù)字都是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E△ABC的邊BC上,AB=AC,AD=AE.

(1)求證:BD=CE;

(2)若AD=BD=DE,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元

1設(shè)A,B兩種商品每件售價(jià)分別為a元、b元,求a、b的值;

2B商品每件的成本是20元,根據(jù)市場(chǎng)調(diào)查:若按1中求出的單價(jià)銷售,該商場(chǎng)每天銷售B商品100件;若銷售單價(jià)每上漲1元,B商品每天的銷售量就減少5件

求每天B商品的銷售利潤(rùn)y與銷售單價(jià)x元之間的函數(shù)關(guān)系?

求銷售單價(jià)為多少元時(shí),B商品每天的銷售利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案