【題目】如圖,為矩形的對(duì)角線(xiàn),將邊沿折疊,使點(diǎn)落在上的點(diǎn)處,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處.
(1)求證:四邊形是平行四邊形;
(2)若求四邊形的面積及與之間的距離.
【答案】(1)證明見(jiàn)解析;(2)面積為30,距離為.
【解析】
(1)根據(jù)矩形的性質(zhì)可得從而得出,然后根據(jù)折疊的性質(zhì)可得,從而證出然后根據(jù)平行四邊形的定義即可證出結(jié)論;
(2)根據(jù)勾股定理即可求出BC,從而求出CM,設(shè),然后利用勾股定理列出方程即可求出CE和BE,然后根據(jù)平行四邊形的面積公式即可求出面積,然后根據(jù)勾股定理求出AE,再根據(jù)平行四邊形的面積公式即可求出與之間的距離.
證明:四邊形是矩形
由折疊的性質(zhì)可得,
又
四邊形是平行四邊形.
在中,
則根據(jù)勾股定理得:.
.
設(shè),則
在中,利用勾股定理可得
即,
解得
∴CE=5,BE=3
故四邊形的面積.
在中,由勾股定理得,
設(shè)與之間的距離為
則,
即,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地下車(chē)庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車(chē)輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車(chē)庫(kù)的車(chē)輛限高標(biāo)志牌為( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)直角三角形的一邊長(zhǎng)等于另一邊長(zhǎng)的2倍,那么這個(gè)直角三角形中較小銳角的正切值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)完成以下問(wèn)題:
圖1 圖2
(1)如圖1, ,弦 與半徑 平行,求證: 是⊙ 的直徑;
(2)如圖2, 是⊙ 的直徑,弦 與半徑 平行.已知圓的半徑為 , , ,求 與 的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是.過(guò)點(diǎn)作于點(diǎn)連結(jié)
(1)求證:;
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說(shuō)明理由;
(3)當(dāng)為何值時(shí),為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱(chēng)點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明過(guò)程:
如圖所示,直線(xiàn)AD與AB,CD分別相交于點(diǎn)A,D,與EC,BF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C.
求證:∠A=∠D.
證明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com