【題目】哈爾濱市某校成立了“航模”、“古詩詞欣賞”、“音樂”、“書法”四個興趣小組,為了解興趣小組報名的情況,對本校參加報名的部分學生進行了抽查(參加報名的學生,每名學生必報且限報一個興趣小組),學校根據(jù)調(diào)查的數(shù)據(jù)繪制了以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了______名學生,扇形統(tǒng)計圖中“航模”部分的圓心角是______度;
(2)補全條形統(tǒng)計圖;
(3)現(xiàn)該校共有800名學生報名參加了這四個興趣小組,請你估計其中有多少名學生選修“古詩詞欣賞”.
【答案】(1)200;;(2)補圖見解析;(3)120名.
【解析】
(1)利用“書法”興趣小組的人數(shù)除以“書法”興趣小組的人數(shù)所占的百分比即可求得本次調(diào)查的學生人數(shù);利用“航模”興趣小組的人數(shù)除以本次調(diào)查的學生人數(shù)乘以360°,即可求得扇形統(tǒng)計圖中“航模”部分的圓心角的度數(shù);(2)利用本次調(diào)查的學生人數(shù)減去“航模”、“古詩詞欣賞” “書法”三個興趣小組的人數(shù),求得“音樂”興趣小組的人數(shù),補全統(tǒng)計圖即可;(3)用800乘以“古詩詞欣賞”興趣小組人數(shù)所占的百分比即可求解.
(1)(人);;
故答案為200;144°.
(2)200-80-30-50=40(人),
補圖如下:
(3)800×=120(人)
答:有120名學生選修“古詩詞欣賞”.
科目:初中數(shù)學 來源: 題型:
【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學生人數(shù)為 ,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“作圓的一個內(nèi)接矩形,并使其對角線的夾角為”的尺規(guī)作圖過程.
已知:.求作:矩形,使得矩形內(nèi)接于,且其對角線的夾角為.
作法:如圖,
①作的直徑;
②以點為圓心,長為半徑畫弧,交直線上方的圓弧于點;
③連接并延長交于點;
④連接.
所以四邊形就是所求作的矩形,根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡).
(2)完成下面的證明.
證明:∵點都在上,
∴.
同理.
∴四邊形是平行四邊形.
∵是的直徑,
∴( )(填推理的依據(jù)).
∴四邊形是矩形.
∵ ,
∴.
∴四邊形是所求作的矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. “打開電視機,正在播足球賽”是必然事件
B. 甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C. 一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)和中位數(shù)都是5
D. “擲一枚硬幣正面朝上的概率是0.5”表示每拋擲硬幣2次就有1次正面朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:點P在一次函數(shù)圖象上,點Q在反比例函數(shù)圖象上,若存在點P與點Q關于原點對稱,我們稱二次函數(shù)為一次函數(shù)與反比例函數(shù)的“新時代函數(shù)”,點P稱為“幸福點”。
(1)判斷與是否存在“新時代函數(shù)”,如果存在,請求出“幸福點”坐標,如果不存在,請說明理由;
(2)若反比例函數(shù)與一次函數(shù)有兩個“幸福點”,和,且,求其“新時代函數(shù)”的解析式;
(3)若一次函數(shù)和反比例函數(shù)在自變量x的值滿足的情況下,其“新時代函數(shù)”的最小值為3,求m的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有一長為18米,寬為6米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們面積之和為60平方米,兩塊綠地之間及周邊留有寬度相等的人行通道,則人行道的寬度為(。┟祝
A. 2B. 1C. 8或1D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,將繞點順時針方向旋轉(zhuǎn)到的位置,此時點恰好在的延長線上,則圖中陰影部分的面積為____(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有三個大小一樣的正六邊形,可按下列方式進行拼接:
方式1:如圖1;
方式2:如圖2;
若有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.有個邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;
②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連結(jié)AD、CD
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C______、D______.
②⊙D的半徑=______(結(jié)果保留根號)
③求出弧AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com