【題目】下列運動形式屬于旋轉(zhuǎn)的是( )

A. 在空中上升的氫氣球 B. 飛馳的火車

C. 時鐘上鐘擺的擺動 D. 運動員擲出的標(biāo)槍

【答案】C

【解析】

根據(jù)旋轉(zhuǎn)的定義逐一進(jìn)行判斷即可得到正確的結(jié)論.

在空氣中上升的氫氣球,飛馳的火車,運動員擲出標(biāo)槍屬于平移現(xiàn)象,時鐘上鐘擺的擺動屬于旋轉(zhuǎn)現(xiàn)象.

故答案選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段,能組成三角形的是( )

A. 1cm,1cm3cmB. 2cm,3cm5cm

C. 3cm,4cm5cmD. 2cm,6cm,9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=x2向左平移2個單位,再向下平移3個單位,則得到的拋物線解析式是( )
A.y=(x﹣2)2﹣3
B.y=(x﹣2)2+3
C.y=(x+2)2﹣3
D.y=(x+2)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點Ma3a)在x軸上,則點M的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線y=axa為拋物線a、b、c為常數(shù),a0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C

1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;

2)如圖,點M為線段CB上一動點,將△ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標(biāo);

3)當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、CE、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點EF的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣1)2017﹣(π﹣2017)0=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級詩歌大會比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答問題.

經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形

如圖,正方形ABCD內(nèi)接于⊙O,O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點作∠MON,使∠MON90°.將∠MON繞點O旋轉(zhuǎn),OM、ON分別與⊙O交于點EF,分別與正方形ABCD的邊交于點G、H.設(shè)由OEOF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S

1當(dāng)OM經(jīng)過點A(如圖①),則S、S1S2之間的關(guān)系為: (用含S1、S2的代數(shù)式表示);

2當(dāng)OMABG(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;

3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( )

A. a+a= a 2 B. a 6÷a 3=a 2 C. (a+b)2=a2+b2 D. (a b3) 2= a2 b6

查看答案和解析>>

同步練習(xí)冊答案