.(8分)如圖1,已知直線y=2x(即直線l1)和直線y=—x+4(即直線l2),l2與x軸相交于點A.點P從原點O出發(fā),向x軸的正方向作勻速運動,速度為每秒1個單位,同時點Q從A點出發(fā),向x軸的負方向作勻速運動,速度為每秒2個單位.設(shè)運動了t秒.

【小題1】(1)求這時點P、Q的坐標(用t表示).
【小題2】(2)過點P、Q分別作x軸的垂線,與l1、l2分別相交于點O1、O2(如圖1).
以O(shè)1為圓心、O1P為半徑的圓與以O(shè)2為圓心、O2Q為半徑的圓能否相切若能,求出t值;若不能,說明理由.

【小題1】解:(1)點P的橫坐標為t,P點的坐標為(t,0),
由- x+4=0得x=8,
所以點Q的橫坐標為8-2t,點Q的坐標為(8-2t,0).
【小題2】(2)由(1)可知點O1的橫坐標為t,點O2的橫坐標為8-2t,
將x=t代入y=2x,得y=2t,
所以點O1的坐標為(t,2t),
將x=8-2t代入y="-" x+4,得y=t,
所以點O2的坐標為(8-2t,t),
①若這兩圓外切(如圖),連接O1O2,過點O2作O2N⊥O1P,垂足為N.
則O1O2=2t+t=3t,O2N=8-2t-t=8-3t,O1P=2t-t=t,
所以t2+(8-3t)2=(3t)2,
即t2-48t+64=0,解得t1="24+16" ,t2="24-16"
②若這兩圓內(nèi)切,又因為兩圓都x軸相切所以點P、Q重合(如圖)
此時O1、O2的橫坐標相同,即8-2t=t,t= ,
(或:設(shè)l2與y軸相交于點M,則= ,即= ,
所以t= ,
所以兩圓能相切,這是t的值分別為24+16 ,24-16 .解析:
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1,已知直線:y=
3
3
x+
3
與直角坐標系xOy的x軸交于點A,與y軸交于點B,點M為x軸正半軸上一點,以點M為圓心的⊙M與直線AB相切于B點,交x軸于C、D兩點,與y軸交于另一點E.
(1)求圓心M的坐標;
(2)如圖2,連接BM延長交⊙M于F,點N為
CF
上任一點,連DN交BF于Q,連FN并延長交x軸于點P.則CP與MQ有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖3,連接BM延長交⊙M于F,點N為
CF
上一動點,NH⊥x軸于H,NG⊥BF于G,連接GH,當N點運動時,下列兩個結(jié)論:①NG+NH為定值;②GH的長度不變;其中只有一個是正確的,請你選擇正確的結(jié)論加以證明,并求出其值?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知直線l的解析式為y=
43
x+4
,它與x軸、y軸分別相交于A、B兩點.點C從點O出發(fā)沿OA以每秒1個單位的速度向點A勻速運動;點D從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,點C、D同時出發(fā),當點C到達點A時同時停止運動.伴隨著C、D的運動,EF始終保持垂直平分CD,垂足為E,且EF交折線AB-BO-AO于點F.
(1)直接寫出A、B兩點的坐標;
(2)設(shè)點C、D的運動時間是t秒(t>0).
①用含t的代數(shù)式分別表示線段AD和AC的長度;
②在點F運動的過程中,四邊形BDEF能否成為直角梯形?若能,求t的值;若不能,請說明理由.(可利用備用圖解題)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知直線y=kx與拋物線y=-
4
27
x2+
22
3
交于點A(3,6).
(1)求k的值;
(2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;
(3)如圖2,若點B為拋物線上對稱軸右側(cè)的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(-2,-1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點D在x軸上運動,當滿足DM=DN時,請求出此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

完成下面證明:

(1)如圖1,已知直線b∥c,a⊥c,求證:a⊥b
證明:∵a⊥c  (已知)
∴∠1=
∠2
∠2
(垂直定義)
∵b∥c (已知)
∴∠1=∠2  (
兩直線平行,同位角相等
兩直線平行,同位角相等

∴∠2=∠1=90° (
等量代換
等量代換

∴a⊥b      (
垂直的定義
垂直的定義

(2)如圖2:AB∥CD,∠B+∠D=180°,求證:CB∥DE
證明:∵AB∥CD (已知)
∴∠B=
∠C
∠C
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (
等量代換
等量代換

∴CB∥DE   (
同旁內(nèi)角互補,兩直線平行
同旁內(nèi)角互補,兩直線平行

查看答案和解析>>

同步練習冊答案