【題目】如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線y=(m+5)x2m+1交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
(1)求雙曲線的解析式;
(2)求B點(diǎn)的坐標(biāo);
(3)若S△AOB=2,求A點(diǎn)的坐標(biāo);
(4)在(3)的條件下,在x軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)B(﹣2,0)(3)A(2,2)(4)P1(2,0),P2(4,0),P3(﹣2,0),P4(2,0)
【解析】
試題分析:(1)根據(jù)雙曲線函數(shù)的定義可以確定m的值;
(2)利用y=kx+2k當(dāng)y=0時(shí),x=2就知道B的坐標(biāo);
(3)根據(jù)(1)知道OB=2,而S△AOB=2,利用它們可以求出A的坐標(biāo);
(4)存在點(diǎn)P,使△AOP是等腰三角形.只是確定P坐標(biāo)時(shí),題目沒有說明誰是腰,是底,所以要分類討論,不要漏解.
解:(1)∵y=(m+5)x2m+1是雙曲線
∴.
∴m=﹣1(2分)
∴(3分)
(2)∵直線y=kx+2k(k≠0)與x軸交于點(diǎn)B
∴當(dāng)y=0時(shí),0=kx+2k
∴x=﹣2(5分)
∴B(﹣2,0)(6分)
(3)∵B(﹣2,0)
∴OB=2(7分)
過A作AD⊥x軸于點(diǎn)D
∵點(diǎn)A在雙曲線y=上,
∴設(shè)A(a,b)
∴ab=4,AD=b(8分)
又∵S△AOB=OBAD=×2b=2
∴b=2(9分)
∴a=2,
∴A(2,2)(10分)
(4)P1(2,0),P2(4,0),P3(﹣2,0),P4(2,0).
(寫對(duì)一個(gè)得一分)(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 各邊都相等的多邊形是正多邊形
B. 正多形的各邊都相等
C. 正三角形就是等邊三角形
D. 各內(nèi)角相等的多邊形不一定是正多邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過連接對(duì)角線的方法,從一個(gè)頂點(diǎn)引出的對(duì)角線把十邊形分成互不重疊的三角形的個(gè)數(shù)為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只螞蟻從數(shù)軸上一點(diǎn)A 出發(fā),爬了7個(gè)單位長度到了原點(diǎn),則點(diǎn)A所表示的數(shù)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△A′B′C′中,有下列條件:①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,則以下各組條件中不能保證△ABC≌△A′B′C′的一組是( )
A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在∠AOB的內(nèi)部任取一點(diǎn)C,作射線OC,則一定存在( )
A. ∠AOB>∠AOC B. ∠AOC=∠BOC
C. ∠BOC>∠AOC D. ∠AOC>∠BOC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com