【題目】如圖,ABC中,ACBC,∠ACB90°,點(diǎn)DAB上,點(diǎn)EBC上,且ADBE,BDAC

1)求證:CDED

2)直接寫出圖中所有是∠ACD2倍的角.

【答案】1)見(jiàn)解析;(2)∠A,∠B,∠CDE是∠ACD2倍的角

【解析】

1)由“SAS”可證ADC≌△BED;

2)由全等三角形的性質(zhì)可得∠ACD=∠BDE,CDDE,由外角性質(zhì)和等腰三角形的性質(zhì)可求∠DCE67.5°,即可求解.

解:(1)∵ACBC,∠ACB90°,

∴∠A=∠B45°,且ADBE,BDAC

∴△ADC≌△BEDSAS),

CDDE

2)∵△ADC≌△BED,

∴∠ACD=∠BDE,CDDE

∵∠BDC=∠A+ACD=∠CDE+BDE,

∴∠CDE=∠A45°,且DCDE,

∴∠DCE67.5°,

∴∠ACD=∠ACB﹣∠DCE22.5°,

∵∠A=∠B=∠CDE45°,

∴∠A,∠B,∠CDE是∠ACD2倍的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣10個(gè),而每降價(jià)1元,就可多賣30個(gè).

(1)求所獲利潤(rùn)y (元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)為獲利最大,商店應(yīng)將價(jià)格定為多少元?

(3)為了讓利顧客,且獲利最大,商店應(yīng)將價(jià)格定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)畫直線EFAC相交于E,與AB的延長(zhǎng)線相交于F,使BFCE

①已知CDE的面積為1,AEkCE,用含k的代數(shù)式表示ABD的面積為   ;

②求證:AEF是等腰三角形;

2)如圖2,在ABC中,若∠122,GABC外一點(diǎn),使∠3=∠1AHBGCGH,且∠4=∠BCG﹣∠2,設(shè)∠Gx,∠BACy,試探究xy之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,在(1)、(2)的條件下,AFD是銳角三角形,當(dāng)∠G100°,ADa時(shí),在AD上找一點(diǎn)P,AF上找一點(diǎn)Q,FD上找一點(diǎn)M,使PQM的周長(zhǎng)最小,試用含a、k的代數(shù)式表示PQM周長(zhǎng)的最小值   .(只需直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF.

(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若∠A=30°,求證:DG=DA;

(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一個(gè)蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B.則這根蘆葦?shù)拈L(zhǎng)度是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,4a)B(3a,0),AOB的面積是150

1)求點(diǎn)A的坐標(biāo);

2)點(diǎn)P是射線AB上的一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,連接PO,若PBO的面積為S,試用含有t的式子表示S

3)在(2)的條件下,若點(diǎn)P在第一象限內(nèi),且SPBO126,過(guò)PPEAB,交y軸于點(diǎn)D,交x軸于點(diǎn)E,且OBOD,連接AEMAE上一點(diǎn),連接OMPE于點(diǎn)N,若∠EMN+ABE180°,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在的內(nèi)接四邊形中,,點(diǎn)上.

(1)求的度數(shù);

(2)若的半徑為,則的長(zhǎng)為多少?

(3)連接,,當(dāng)時(shí),恰好是的內(nèi)接正邊形的一邊,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直角三角板ABC按如圖1放置,直角頂點(diǎn)C與坐標(biāo)原點(diǎn)重合,直角邊AC、BC分別與x軸和y軸重合,其中∠ABC30°.將此三角板沿y軸向下平移,當(dāng)點(diǎn)B平移到原點(diǎn)O時(shí)運(yùn)動(dòng)停止.設(shè)平移的距離為m,平移過(guò)程中三角板落在第一象限部分的面積為ss關(guān)于m的函數(shù)圖象(如圖2所示)與m軸相交于點(diǎn)P,0),與s軸相交于點(diǎn)Q

1)試確定三角板ABC的面積;

2)求平移前AB邊所在直線的解析式;

3)求s關(guān)于m的函數(shù)關(guān)系式,并寫出Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案