【題目】某市為了了解高峰時段16路車從總站乘該路車出行的人數(shù),隨機抽查了10個班次乘該路車人數(shù),結(jié)果如下:
14,23,16,25,23,28,26,27,23,25
(1)這組數(shù)據(jù)的眾數(shù)為 , 中位數(shù)為;
(2)計算這10個班次乘車人數(shù)的平均數(shù);
(3)如果16路車在高峰時段從總站共出車60個班次,根據(jù)上面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少?

【答案】
(1)23;24
(2)解:平均數(shù)= (14+16+23+23+23+25+25+26+27+28)=23(人)

答:這10個班次乘車人數(shù)的平均數(shù)是23人


(3)解:60×23=1380(人)

答:在高峰時段從總站乘該路車出行的乘客共有1380人


【解析】解:(1)這組數(shù)據(jù)按從小到大的順序排列為:14,16,23,23,23,25,25,26,27,28,
則眾數(shù)為:23,
中位數(shù)為: =24;
【考點精析】通過靈活運用算術(shù)平均數(shù),掌握總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對應(yīng)的總份數(shù)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=10,AD=8,則AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x﹣2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點,與x軸相交于點C.已知tan∠BOC= ,點B的坐標為(m,n),求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對正方形紙片ABCD進行如下操作:

(I)過點D任作一條直線與BC邊相交于點E1(如圖①),記∠CDE1=a1;
(II)作∠ADE1的平分線交AB邊于點E2(如圖②),記∠ADE2=a2;
(III)作∠CDE2的平分線交BC邊于點E3(如圖③),記∠CDE3=a3;
按此作法從操作(2)起重復(fù)以上步驟,得到a1 , a2 , …,an , …,現(xiàn)有如下結(jié)論:
①當a1=10°時,a2=40°;
②2a4+a3=90°;
③當a5=30°時,△CDE9≌△ADE10;
④當a1=45°時,BE2= AE2
其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲從M地騎摩托車勻速前往N地,同時乙從N地沿同一條公路騎自行車勻速前往M地,甲到達N地后,原路原速返回,追上乙后返回到M地.設(shè)甲、乙與N地的距離分別為y1、y2千米,甲與乙之間的距離為s千米,設(shè)乙行走的時間為x小時.y1、y2與x之間的函數(shù)圖象如圖1.

(1)分別求出y1、y2與x的函數(shù)表達式;
(2)求s與x的函數(shù)表達式,并在圖2中畫出函數(shù)圖象;
(3)當兩人之間的距離不超過5千米時,能夠用無線對講機保持聯(lián)系.并且規(guī)定:持續(xù)聯(lián)系時間不少于15分鐘為有效聯(lián)系時間.求當兩人用無線對講機保持有效聯(lián)系時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行100米到達C處,再測得山頂A的仰角為45°,求山高AD是多少?(結(jié)果保留整數(shù),測角儀忽略不計,參考數(shù)據(jù) ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:①abc>0;②方程ax2+bx+c=0的根為x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正確的說法有(

A.①②③
B.②③④
C.①②④
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,E、F分別是AB和BC上的點,且BE=BF.

(1)求證:△ADE≌△CDF;
(2)若∠A=40°,∠DEF=65°,求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);
(2)求船P到海岸線MN的距離(即PE的長);
(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊答案