【題目】如圖,已知正方形的邊長(zhǎng)為5,點(diǎn)分別在、上,,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長(zhǎng)為______.

【答案】

【解析】

根據(jù)正方形的四條邊都相等可得AB=AD,每一個(gè)角都是直角可得∠BAE=D=90°,然后利用“邊角邊”證明△ABE≌△DAF得∠ABE=DAF,進(jìn)一步得∠AGE=BGF=90°,從而知GH=BF,利用勾股定理求出BF的長(zhǎng)即可得出答案.

解:∵四邊形ABCD為正方形,

∴∠BAE=D=90°,AB=AD,

在△ABE和△DAF中,

,

∴△ABE≌△DAFSAS),

∴∠ABE=DAF,

∵∠ABE+BEA=90°,

∴∠DAF+BEA=90°,

∴∠AGE=BGF=90°,

∵點(diǎn)HBF的中點(diǎn),

GH=BF,

BC=5CF=CD-DF=5-2=3,

BF=,

GH=BF=,
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且

AB=DE,∠A=∠D,AF=DC.

(1)求證:四邊形BCEF是平行四邊形,

(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解食品安全狀況,質(zhì)監(jiān)部門抽查了甲、乙、丙、丁四個(gè)品牌飲料的質(zhì)量,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:

(1)這次抽查了四個(gè)品牌的飲料共 瓶;

(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;

(3)若四個(gè)品牌飲料的平均合格率是95%,四個(gè)品牌飲料月銷售量約20萬(wàn)瓶,請(qǐng)你估計(jì)這四個(gè)品牌的不合格飲料有多少瓶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)居民節(jié)約用電,某市采用價(jià)格調(diào)控手段達(dá)到省電目的,該市電費(fèi)收費(fèi)標(biāo)準(zhǔn)如下表(按月結(jié)算):

每月用電量度

電價(jià)/(元/度)

不超過(guò)150度的部分

0.50/

超過(guò)150度且不超過(guò)250度的部分

0.65/

超過(guò)250度的部分

0.80/

問(wèn):(1)某居民12月份用電量為180度,請(qǐng)問(wèn)該居民12月應(yīng)繳交電費(fèi)多少元?

2)設(shè)某月的用電量為度(),試寫出不同電量區(qū)間應(yīng)繳交的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將口ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.

(1)求證:△ABF≌△ECF

(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=54°,以AB為直徑的 O分別交AC,BC于點(diǎn)D,E,過(guò)點(diǎn)B作⊙O的切線,交AC的延長(zhǎng)線于點(diǎn)F

1求證:BE=CE;

2求∠CBF的度數(shù);

3AB=6,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖1,拋物線y=x2x+3x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,1),連接BC、AC

1)求出直線AD的解析式;

2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)ADF的面積最大時(shí),有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、M、N、F構(gòu)成四邊形AMNF,請(qǐng)求出四邊形AMNF的周長(zhǎng)最小時(shí)點(diǎn)N的橫坐標(biāo);

3)如圖3,將DBC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α°0α°180°),記旋轉(zhuǎn)中的DBCDB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)CPQ是等腰三角形時(shí),求CP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某區(qū)采用價(jià)格調(diào)控手段達(dá)到節(jié)水的目的,如表是調(diào)控后的價(jià)目表.

價(jià)目表

每月用水量

單價(jià)

不超過(guò)6噸的部分

2元/噸

超出6噸不超出10噸的部分

4元/噸

超出10噸的部分

8元/噸

注:水費(fèi)按月結(jié)算.

1)若該戶居民8月份用水8噸,則該用戶8月應(yīng)交水費(fèi)   元;若該戶居民9月份應(yīng)交水費(fèi)26元,則該用戶9月份用水量為   噸;

2)若該戶居民10月份應(yīng)交水費(fèi)30元,求該用戶10月份用水量;

3)若該戶居民11月、12月共用水18噸,共交水費(fèi)52元,求11月、12月各應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為1的菱形ABCD對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則的最小值是(

A. 2B. C. 1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案