【題目】如圖,已知△ABC,AC<AB.
(1) 用直尺和圓規(guī)作出一條過點A的直線l,使得點C關于直線l的對稱點落在邊AB上(不寫作法,保留作圖痕跡);
(2) 設直線l與邊BC的交點為D,且∠C=2∠B,請你通過觀察或測量,猜想線段AB、AC、CD之間的數(shù)量關系,并說明理由.
【答案】(1)作圖見解析;(2)AB=AC+CD.
【解析】試題分析:(1)先作∠BAC的平分線l,再過點C作CF⊥l交AB于F,則可得到點C和F點關于l對稱,所以l為所作;
(2)連結DF,如圖,利用等腰三角形的判定方法得到AF=AC,則AD垂直平分CF,所以DF=DC,則∠DCF=∠DFC,再利用三角形外角性質得∠BDF=2∠DCF,接著證明∠B=2∠BCF,于是得到∠B=∠BDF,則FB=FD=CD,則易得AB=AF+FB=AC+CD.
試題解析:(1)如圖,直線l為所作;
(2)AB=AC+CD.理由如下:
連結DF,如圖,
∵AD平分∠BAC,AD⊥CF,
∴AF=AC,
∴AD垂直平分CF,
∴DF=DC,
∴∠DCF=∠DFC,
∴∠BDF=∠DCF+∠DFC=2∠DCF,
∵∠AFC=∠ACF,
∵∠AFC=∠B+∠BCF,
∴∠ACF=∠B+∠BCF,
∵∠ACB=2∠B,
∴2∠B-∠BCF=∠B+∠BCF,
∴∠B=2∠BCF,
∴∠B=∠BDF,
∴FB=FD,
∴FB=CD,
∴AB=AF+FB=AC+CD.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓,,點D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是( 。
A. ﹣10B. 10C. ﹣6D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OD⊥AB于點O,分別交AC、CF于點E、D,且DE=DC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為5,BC=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。
(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列一元一次不等式解應用題時,應注意抓住題中的關鍵詞.用不等號表示下列關鍵詞:不大于: ,不少于: ,不超過: ,至多: ,至少: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com