【題目】(1)如圖1,∠AOB和∠COD都是直角
①若∠BOC=60°,則∠BOD= °,∠AOC= °;
②改變∠BOC的大小,則∠BOD與∠AOC相等嗎?為什么?
(2)如圖2,∠AOB=∠COD=80°,若∠AOD=∠BOC+40°,求∠AOC的度數(shù);
(3)如圖3,將三個相同的等邊三角形(三個內(nèi)角都是60°)的一個頂點重合放置,若∠BAE=10°, ∠HAF=30°,則∠1= °.
【答案】(1) ① 30°, 30°, ②相等,同角的余角相等;(2)20°;(3)20°.
【解析】試題分析:(1)根據(jù)余角的性質(zhì)即可得到結(jié)論; (2)根據(jù)角的和差即可得到結(jié)果; (3)根據(jù)等邊三角形的性質(zhì)得到∠DAH=∠EAF=∠BAC=60°,根據(jù)角的和差即可得到結(jié)論.
試題解析:
(1) ①∵∠AOB和∠COD都是直角,∠BOC=60°,
∴∠BOD=30°,∠AOC=30°;
②∠BOD=∠AOC,根據(jù)同角的余角相等可得結(jié)論;
(2) ∵∠AOB=∠COD=80°,
∴∠AOC=∠BOD=,
∵∠AOD=∠BOC+40°,
∴∠AOC=20°;
(3) ∵∠DAH=∠EAF=∠BAC=60°,
∴∠DAE=∠HAF=30°,
∴∠1=60°-30°-10°=20°.
科目:初中數(shù)學 來源: 題型:
【題目】已知k>0,則函數(shù)y=-kx+k的圖象經(jīng)過第________象限( )
A. 一、二、三 B. 二、三、四 C. 一、二、四 D. 一、三、四
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四人參加訓練,近期的10次百米測試平均成績都是13.2s,方差如下表:
選手 | 甲 | 乙 | 丙 | 丁 |
方差(s2) | 0.020 | 0.019 | 0.021 | 0.022 |
則這四人中發(fā)揮最穩(wěn)定的是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣2014年的GDP是250億元,要使2016年的GDP達到360億元,求這兩年該縣GDP年平均增長率.設(shè)年平均增長率為x,可列方程_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y= (k≠0),下列說法不正確的是( )
A.它的圖像分布在第一、三象限
B.點(k,k)在它的圖像上
C.它的圖像關(guān)于原點對稱
D.在每個象限內(nèi)y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是某一蓄水池每小時的排水量V(m3/h)與排完水池中的水所用的時間t(h)之間的函數(shù)關(guān)系圖像.
(1)請你根據(jù)圖像提供的信息求出此蓄水池的蓄水量;
(2)求出此函數(shù)的解析式;
(3)若要6h排完水池中的水,那么每小時的排水量應該是多少?
(4)如果每小時排水量不超過5 000m3 , 那么水池中的水至少要多少小時排完?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將二次函數(shù)y=x2的圖象向上平移1個單位,再向右平移2個單位所得圖象的解析式是( 。
A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x﹣2)2﹣1D.y=(x+2)2﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠家生產(chǎn)的一種新型節(jié)能燈,為了打開市場出臺了相關(guān)政策:由廠家協(xié)調(diào),廠家按成本價提供產(chǎn)品給經(jīng)營戶自主銷售,成本價與出廠價之間的差價由廠家承擔.李明按照相關(guān)政策投資銷售本產(chǎn)品.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始銷售的第一個月將銷售單價定為20元,那么廠家這個月為他承擔的總差價為多少元?
(2)設(shè)李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么廠家為他承擔的總差價最少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com