【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF~△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正確的結(jié)論有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】B
【解析】解: ∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于點(diǎn)F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正確;
∵AD∥BC,
∴△AEF∽△CBF,
∴ = ,
∵AE= AD= BC,
∴ ,
∴CF=2AF,故②正確;
如圖,過(guò)D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四邊形BMDE是平行四邊形,
∴BM=DE= BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于點(diǎn)F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正確;
設(shè)AE=a,AB=b,則AD=2a,
由△BAE∽△ADC,有 = ,即b= a,
∴tan∠CAD= .故④正確;
故選B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用矩形的性質(zhì),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.
(1)求過(guò)O,A,C三點(diǎn)的拋物線(xiàn)的解析式,并判斷△ABC的形狀;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式組
(1)求不等式組的解集,并寫(xiě)出它的所有整數(shù)解;
(2)在不等式組的所有整數(shù)解中任取兩個(gè)不同的整數(shù)相乘,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解市民對(duì)全市創(chuàng)衛(wèi)工作的滿(mǎn)意程度,某中學(xué)教學(xué)興趣小組在全市甲、乙兩個(gè)區(qū)內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿(mǎn)意,一般,滿(mǎn)意,非常滿(mǎn)意四類(lèi),回收、整理好全部問(wèn)卷后,得到下列不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中信息,解決下列問(wèn)題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù).
(2)求此次調(diào)查中結(jié)果為非常滿(mǎn)意的人數(shù).
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為不滿(mǎn)意的4位市民中隨機(jī)選擇2為進(jìn)行回訪,已知4為市民中有2位來(lái)自甲區(qū),另2位來(lái)自乙區(qū),請(qǐng)用列表或用畫(huà)樹(shù)狀圖的方法求出選擇的市民均來(lái)自甲區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保△OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測(cè)雷達(dá),雷達(dá)的有效探測(cè)范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測(cè))
(1)若三艘軍艦要對(duì)△OBC海域進(jìn)行無(wú)盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測(cè)半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時(shí)刻軍艦B測(cè)得A位于北偏東60°方向上,同時(shí)軍艦C測(cè)得A位于南偏東30°方向上,求此時(shí)敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線(xiàn)以20 海里/小時(shí)的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問(wèn)B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實(shí)踐情況,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),設(shè)學(xué)生時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時(shí)間的中位數(shù)落在哪個(gè)等級(jí)內(nèi)?
(3)表示B等級(jí)的扇形圓心角α的度數(shù)是多少?
(4)在此次問(wèn)卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時(shí)間超過(guò)2小時(shí),乙班有3人平均每天課外學(xué)習(xí)時(shí)間超過(guò)2小時(shí),若從這5人中任選2人去參加座談,試用列表或化樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 的圖象如圖所示,關(guān)于該函數(shù),下列結(jié)論正確的是(填序號(hào)). ①函數(shù)圖象是軸對(duì)稱(chēng)圖形;②函數(shù)圖象是中心對(duì)稱(chēng)圖形;③當(dāng)x>0時(shí),函數(shù)有最小值;④點(diǎn)(1,4)在函數(shù)圖象上;⑤當(dāng)x<1或x>3時(shí),y>4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l1:y= x與直線(xiàn)l2:y=﹣x+6相交于點(diǎn)M,直線(xiàn)l2與x軸相交于點(diǎn)N.
(1)求M,N的坐標(biāo).
(2)矩形ABCD中,已知AB=1,BC=2,邊AB在x軸上,矩形ABCD沿x軸自左向右以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),設(shè)矩形ABCD與△OMN的重疊部分的面積為S,移動(dòng)的時(shí)間為t(從點(diǎn)B與點(diǎn)O重合時(shí)開(kāi)始計(jì)時(shí),到點(diǎn)A與點(diǎn)N重合時(shí)計(jì)時(shí)開(kāi)始結(jié)束).直接寫(xiě)出S與自變量t之間的函數(shù)關(guān)系式(不需要給出解答過(guò)程).
(3)在(2)的條件下,當(dāng)t為何值時(shí),S的值最大?并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
(2)畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2;
(3)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是;過(guò)C、C1、C2三點(diǎn)的圓的圓弧 的長(zhǎng)是(保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com