某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠有三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元.
(1)若商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)50臺(tái),正好花去9萬(wàn)元,請(qǐng)你研究一下商場(chǎng)的進(jìn)貨方案;
(2)某商場(chǎng)銷售一臺(tái)甲、乙、丙電視機(jī),分別可獲利150元,200元,250元,為使獲利最多,應(yīng)選擇上述哪種進(jìn)貨方案?
分析:(1)根據(jù)題意可設(shè)進(jìn)甲x臺(tái)進(jìn)乙y臺(tái)進(jìn)丙(50-x-y)臺(tái),列式為1500x+2100y+2500(50-x-y)=90000,化簡(jiǎn)得5x+2y=175,根據(jù)x,y的實(shí)際意義得到x≥25,根據(jù)題意可知取x=25時(shí),y=25,丙=0和x=35,y=0,丙=15這兩種方案.
(2)根據(jù)題意列出利潤(rùn)的關(guān)系式:利潤(rùn)=8125-225X,利用函數(shù)的單調(diào)性可得最大利潤(rùn)時(shí)x=25,y=25,丙=0.
解答:解:設(shè)進(jìn)甲x臺(tái)進(jìn)乙y臺(tái)進(jìn)丙(50-x-y)臺(tái),
1500x+2100y+2500(50-x-y)=90000
10x+4y=350
5x+2y=175
∵y=
175-5x
2
,x得為奇數(shù)
x≥0,-
5
2
x+87.5≤50,5x≥75,
∴x≥25
x=25時(shí),y=25,丙=0;
x=27時(shí),y=20,丙=3;
x=29時(shí),y=15,丙=6;
x=31,y=10丙=9;
x=33,y=5,丙=12;
x=35,y=0,丙=15.
所以選擇有2種方案.方案一:甲種25臺(tái),乙種25臺(tái);方案二:甲種35臺(tái),丙種15臺(tái);
(2)利潤(rùn)應(yīng)為:方案一:25×150+25×200=8750元,
方案二:35×150+15×250=9000元,
∵9000元>8750元,∴方案二獲利多,
答:購(gòu)甲種電視機(jī)25臺(tái),乙種電視機(jī)25臺(tái);或購(gòu)甲種電視機(jī)35臺(tái),丙種電視機(jī)15臺(tái).
購(gòu)買甲種電視機(jī)35臺(tái),丙種電視機(jī)15臺(tái)獲利最多.所以應(yīng)選擇方案二.
點(diǎn)評(píng):主要考查利用一次函數(shù)的模型解決實(shí)際問(wèn)題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義求解.注意要根據(jù)自變量的實(shí)際范圍確定函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1 500元,乙種每臺(tái)2 100元,丙種每臺(tái)2 500元,若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)你研究一下商場(chǎng)的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī).已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元.
(1)若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)研究一下商場(chǎng)的進(jìn)貨方案;
(2)若商場(chǎng)銷售一臺(tái)甲種電視機(jī)可獲利150元,銷售一臺(tái)乙種電視機(jī)可獲利200元,銷售一臺(tái)丙種電視機(jī)可獲利250元.在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)電視機(jī)的方案中,為使銷售時(shí)獲利最多,你選擇哪種進(jìn)貨方案;
(3)若商場(chǎng)準(zhǔn)備用9萬(wàn)元同時(shí)購(gòu)進(jìn)三種不同的電視機(jī)50臺(tái),請(qǐng)你設(shè)計(jì)進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)買50臺(tái)電視機(jī),已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī)的出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元,商場(chǎng)銷售一臺(tái)甲種電視機(jī)可獲利150元,銷售乙種電視機(jī)每臺(tái)可獲利200元,銷售丙種電視機(jī)每臺(tái)可獲利250元.
(1)若同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)你研究一下商場(chǎng)的進(jìn)貨方案;
(2)經(jīng)市場(chǎng)調(diào)查這三種型號(hào)的電視機(jī)是最受歡迎的,且銷售量乙種是丙種的3倍.商場(chǎng)要求成本不能超過(guò)計(jì)劃撥款數(shù)額,利潤(rùn)不能少于8500元的前提,購(gòu)進(jìn)這三種型號(hào)的電視機(jī)共50臺(tái),請(qǐng)你設(shè)計(jì)這三種不同型號(hào)的電視機(jī)各進(jìn)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)計(jì)劃撥款9萬(wàn)元購(gòu)進(jìn)50臺(tái)電視機(jī).已知廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種電視機(jī)每臺(tái)1500元,乙種電視機(jī)每臺(tái)2100元,丙種電視機(jī)每臺(tái)2500元.
(1)若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬(wàn)元,問(wèn)有多少種不同的進(jìn)貨方案?并寫出這些方案.
(2)若商場(chǎng)銷售一臺(tái)甲種電視機(jī)可獲利150元,銷售一臺(tái)乙種電視機(jī)可獲利200元,銷售一臺(tái)丙種電視機(jī)可獲利250元.在第(1)小題的幾個(gè)方案中,為使銷售時(shí)獲得利潤(rùn)最多,你選擇哪種方案?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案