【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)Bx軸正半軸上,點(diǎn)D在第三象限的雙曲線y上,過點(diǎn)CCEx軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為( 。

A. 2.5B. 3C. 3.5D. 4

【答案】C

【解析】

證明DHA≌△CGDAAS)、ANB≌△DGCAAS)得到:AN=DG=1=AH,而AH=-1-m=1,解得:m=-2,即可求解.

設(shè)點(diǎn)Dm,),

如圖所示,過點(diǎn)Dx軸的垂線交CE于點(diǎn)G,過點(diǎn)Ax軸的平行線交DG于點(diǎn)H,過點(diǎn)AANx軸于點(diǎn)N,

∵∠GDC+DCG=90°,∠GDC+HDA=90°

∴∠HDA=GCD,

AD=CD,∠DHA=CGD=90°,

∴△DHA≌△CGDAAS),

HA=DG,DH=CG

同理ANB≌△DGCAAS),

AN=DG=1=AH,則點(diǎn)Gm,-1),CG=DH,

AH=-1-m=1,解得:m=-2,

故點(diǎn)G-2,-4),D-2-3),H-21),

則點(diǎn)E-,-4),GE=,

CE=CG-GE=DH-GE=4-=3.5,

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地沿同一路線同時(shí)出發(fā),相向而行,以各自速度勻速行駛,甲車行駛到B地停止,乙車行駛到A地停止,甲車比乙車先到達(dá)目的地.設(shè)甲、乙兩車之間的路程為y(km),乙車行駛的時(shí)間為x(h),y與x之間的函數(shù)圖象如圖所示.

(1)求甲車行駛的速度.

(2)求甲車到達(dá)B地后y與x之間的函數(shù)關(guān)系式.

(3)當(dāng)兩車相遇后,兩車之間的路程是160km時(shí),求乙車行駛的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說明理由;

(3)OPD為等腰三角形時(shí),寫出點(diǎn)P的坐標(biāo)(不必寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3經(jīng)過點(diǎn)A1,0)和點(diǎn)B5,0).

1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

2)該拋物線與直線相交于C、D兩點(diǎn),點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點(diǎn)M、N

連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動(dòng)過程中,△PCD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說明理由;

連結(jié)PB,過點(diǎn)CCQ⊥PM,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得△CNQ△PBM相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD對(duì)角線AC上的一點(diǎn),連接DP并延長(zhǎng)DP交邊AB于點(diǎn)E,連接BP并延長(zhǎng)交邊AD于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G.已知DFFA12

1)求證:△APB≌△APD

2)當(dāng)線段DP的長(zhǎng)為6時(shí),求線段FG的長(zhǎng);

3)請(qǐng)直接寫出的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=90°,BA=BC.將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AD,E是邊BC上的一動(dòng)點(diǎn),連結(jié)DEAC于點(diǎn)F,連結(jié)BF.

(1)求證:FB=FD;

(2)如圖2,連結(jié)CD,點(diǎn)H在線段BE上(不含端點(diǎn)),且BH=CE,連結(jié)AHBF于點(diǎn)N.

①判斷AHBF的位置關(guān)系,并證明你的結(jié)論;

②連接CN.若AB=2,請(qǐng)直接寫出線段CN長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BAC=90°,對(duì)角線AC,BD相交于點(diǎn)P,以AB為直徑的O分別交BC,BD于點(diǎn)E,Q,連接EP并延長(zhǎng)交AD于點(diǎn)F.

(1)求證:EF是O的切線;

(2)求證:=4BPQP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測(cè)某飲料會(huì)暢銷、先用1800元購(gòu)進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購(gòu)進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.

1)第一批飲料進(jìn)貨單價(jià)多少元?

2)若兩次進(jìn)飲料都按同一價(jià)格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案