【題目】如圖,正方形AOCB的邊長(zhǎng)為4,反比例函數(shù)的圖象過(guò)點(diǎn)E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點(diǎn)D,直線過(guò)點(diǎn)D,與線段AB相交于點(diǎn)F,求點(diǎn)F的坐標(biāo);
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.
【答案】(1)y=;(2)點(diǎn)F的坐標(biāo)為(2,4).(3)∠AOF=∠EOC.見(jiàn)解析
【解析】試題分析:(1)設(shè)反比例函數(shù)的解析式為y=,把點(diǎn)E(3,4)代入即可求出k的值,進(jìn)而得出結(jié)論;
(2)由正方形AOCB的邊長(zhǎng)為4,故可知點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.由于點(diǎn)D在反比例函數(shù)的圖象上,所以點(diǎn)D的縱坐標(biāo)為3,即D(4,3),由點(diǎn)D在直線y=﹣x+b上可得出b的值,進(jìn)而得出該直線的解析式,再把y=4代入直線的解析式即可求出點(diǎn)F的坐標(biāo);
(3)在CD上取CG=AF=2,連接OG,連接EG并延長(zhǎng)交x軸于點(diǎn)H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG.設(shè)直線EG的解析式為y=mx+n,把E(3,4),G(4,2)代入即可求出直線EG的解析式,故可得出H點(diǎn)的坐標(biāo),在Rt△AOF中,AO=4,AE=3,根據(jù)勾股定理得OE=5,可知OH=OE,即OG是等腰三角形底邊EF上的中線.所以OG是等腰三角形頂角的平分線,由此即可得出結(jié)論.
解:(1)設(shè)反比例函數(shù)的解析式y=,
∵反比例函數(shù)的圖象過(guò)點(diǎn)E(3,4),
∴4=,即k=12.
∴反比例函數(shù)的解析式y=;
(2)∵正方形AOCB的邊長(zhǎng)為4,
∴點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.
∵點(diǎn)D在反比例函數(shù)的圖象上,
∴點(diǎn)D的縱坐標(biāo)為3,即D(4,3).
∵點(diǎn)D在直線y=﹣x+b上,
∴3=﹣×4+b,解得b=5.
∴直線DF為y=﹣x+5,
將y=4代入y=﹣x+5,得4=﹣x+5,解得x=2.
∴點(diǎn)F的坐標(biāo)為(2,4).
(3)∠AOF=∠EOC.
證明:在CD上取CG=AF=2,連接OG,連接EG并延長(zhǎng)交x軸于點(diǎn)H.
∵AO=CO=4,∠OAF=∠OCG=90°,AF=CG=2,
∴△OAF≌△OCG(SAS).
∴∠AOF=∠COG.
∵∠EGB=∠HGC,∠B=∠GCH=90°,BG=CG=2,
∴△EGB≌△HGC(ASA).
∴EG=HG.
設(shè)直線EG:y=mx+n,
∵E(3,4),G(4,2),
∴,解得,.
∴直線EG:y=﹣2x+10.
令y=﹣2x+10=0,得x=5.
∴H(5,0),OH=5.
在Rt△AOE中,AO=4,AE=3,根據(jù)勾股定理得OE=5.
∴OH=OE.
∴OG是等腰三角形底邊EH上的中線.
∴OG是等腰三角形頂角的平分線.
∴∠EOG=∠GOH.
∴∠EOG=∠GOC=∠AOF,即∠AOF=∠EOC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣4x+m+1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寧波火車(chē)站北廣場(chǎng)將于2015年底投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解該校學(xué)生的課余活動(dòng)情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成折線統(tǒng)計(jì)圖(部分)和扇形統(tǒng)計(jì)圖(部分)如下:
(1)在這次研究中,一共調(diào)查了 名學(xué)生.
(2)補(bǔ)全頻數(shù)分布折線圖;
(3)該校共有2200名學(xué)生,估計(jì)該校學(xué)生中愛(ài)好閱讀的人數(shù)大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)并銷(xiāo)售某種產(chǎn)品,假設(shè)銷(xiāo)售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷(xiāo)售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式;線段CD所表示的y2與x之間的函數(shù)表達(dá)式.
(2)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com