如圖,已知∠ABO=∠DCO,OB=OC,求證:△ABC≌△DCB.


【考點(diǎn)】全等三角形的判定;全等三角形的性質(zhì);等腰三角形的性質(zhì).

【專題】證明題.

【分析】根據(jù)ASA推出△ABO≌△DCO,根據(jù)全等三角形的性質(zhì)得出∠A=∠D,求出∠ABC=∠DCB,根據(jù)AAS推出即可.

【解答】證明:∵在△ABO和△DCO中

∴△ABO≌△DCO(ASA),

∴∠A=∠D,

∵OB=OC,

∴∠OBC=∠OCB,

∵∠ABO=∠DCO,

∴∠ABO+∠OBC=∠DCO+∠OCB,

即∠ABC=∠DCB,

在△ABC和△DCB中,

∴△ABC≌△DCB(AAS).

【點(diǎn)評(píng)】本題考查了全等三角形的判定定理、性質(zhì)定理和等腰三角形的性質(zhì)的應(yīng)用,能綜合運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA和AAA不能推出兩三角形全等.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


化簡(jiǎn)的結(jié)果是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列函數(shù)的圖象在每一個(gè)象限內(nèi),y值隨x值的增大而增大的是( 。

A.y=﹣x+1  B.y=x2﹣1  C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在陽光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).

(1)如果確定小亮打第一場(chǎng),再從其余三人中隨機(jī)選取一人打第一場(chǎng),求恰好選中大剛的概率;

(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場(chǎng).游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢(shì),如果恰好有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新開始,這三人伸出“手心”或“手背”都是隨機(jī)的,請(qǐng)用畫樹狀圖的方法求小瑩和小芳打第一場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


九年級(jí)某班40位同學(xué)的年齡如下表所示:

年齡(歲)

13

14

15

16

人數(shù)

3

16

19

2

則該班40名同學(xué)年齡的眾數(shù)和中位數(shù)分別是( 。

A.19,15   B.15,14.5 C.19,14.5 D.15,15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


函數(shù)自變量的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知a﹣b=1,則代數(shù)式2a﹣2b+2014值是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題:

(1)這次抽樣調(diào)查中,共調(diào)查了 500 名學(xué)生;

(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?

查看答案和解析>>

同步練習(xí)冊(cè)答案