【題目】如圖,在平面直角坐標(biāo)系中,頂點為(4,1)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,3).
(1)求此拋物線的解析式;
(2)已知點P是拋物線上的一個動點,且位于A,C兩點之間,問:當(dāng)點P運(yùn)動到什么位置時,△PAC的面積最大?并求出此時P點的坐標(biāo)和△PAC的最大面積;
(3)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與有怎樣的位置關(guān)系,并給出證明.
【答案】(1) (2)P點的坐標(biāo)為;(3)相交.證明解解析.
【解析】分析:(1)已知拋物線的頂點坐標(biāo),可用頂點式設(shè)拋物線的解析式,然后將A點坐標(biāo)代入其中,即可求出此二次函數(shù)的解析式;
(2)過P作y軸的平行線,交AC于Q;易求得直線AC的解析式,可設(shè)出P點的坐標(biāo),進(jìn)而可表示出P、Q的縱坐標(biāo),也就得出了PQ的長;然后根據(jù)三角形面積的計算方法,可得出關(guān)于的面積與P點橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出的最大面積及對應(yīng)的P點坐標(biāo).
(3)根據(jù)拋物線的解析式,易求得對稱軸的方程及B、C的坐標(biāo),分別求出直線AB、BD、CE的解析式,再求出CE的長,與到拋物線的對稱軸的距離相比較即可;
詳解:(1)設(shè)拋物線為
∵拋物線經(jīng)過點A(0,3),
∴
∴拋物線為
(2)如圖,過點P作平行于y軸的直線交AC于點Q;
可求出AC的解析式為
設(shè)P點的坐標(biāo)為
則Q點的坐標(biāo)為
∴
∵
∴當(dāng)m=3時,的面積最大為;
此時,P點的坐標(biāo)為.
(3)相交.證明:連接CE,則,
當(dāng)時,
A(0,3),B(2,0),C(6,0),
對稱軸x=4,
∴ ,
∵AB⊥BD,
∴
∴△AOB∽△BEC,
∴
∵
∴拋物線的對稱軸與⊙C相交.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀思考
我們知道,在數(shù)軸上|a|表示數(shù)a所對應(yīng)的點到原點的距離,這是絕對值的幾何意義,由此我們可進(jìn)一步地來研究數(shù)軸上任意兩個點之間的距離,一般地,如果數(shù)軸上兩點A、B 對立的數(shù)用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數(shù)的減去左邊的點所表示的數(shù)來計算,例如:數(shù)軸上P,Q兩點表示的數(shù)分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.
啟發(fā)應(yīng)用
如圖,點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長;
(2)如圖,點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長;
②在數(shù)軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應(yīng)的數(shù):若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,射線OE平分∠AOD.
(1)若∠COE=40°,則∠BOD= .
(2)若∠COE=α,求∠BOD(請用含α的代數(shù)式表示);
(3)當(dāng)三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一根直立的旗桿高8m,因刮大風(fēng)旗桿從點C處折斷,頂部B著地且離旗桿底部A4m.
(1)求旗桿距地面多高處折斷;
(2)工人在修復(fù)的過程中,發(fā)現(xiàn)在折斷點C的下方1.25m的點D處,有一明顯裂痕,若下次大風(fēng)將旗桿從點D處吹斷,則距離旗桿底部周圍多大范圍內(nèi)有被砸傷的危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠第一車間有x人,第二車間比第一車間人數(shù)的 少30人,從第二車間調(diào)出y人到第一車間,那么:
(1)調(diào)動后,第一車間的人數(shù)為 人;第二車間的人數(shù)為 人.(用x,y的代數(shù)式表示);
(2)求調(diào)動后,第一車間的人數(shù)比第二車間的人數(shù)多幾人(用x,y的代數(shù)式表示)?
(3)如果第一車間從第二車間調(diào)入的人數(shù),是原來調(diào)入的10倍,則第一車間人數(shù)將達(dá)到360人,求實際調(diào)動后,(2)題中的具體人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù)).其中正確結(jié)論的有( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)
對角線條數(shù)分別為 、 、 、 .
(2)n邊形可以有20條對角線嗎?如果可以,求邊數(shù)n的值;如果不可以,請說明理由.
(3)若一個n邊形的內(nèi)角和為1800°,求它對角線的條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當(dāng)x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關(guān)于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com