已知:關(guān)于x的一元一次方程kx=x+2 ①的根為正實(shí)數(shù),二次函數(shù)y=ax2?bx+kc(c≠0)的圖象與x軸一個交點(diǎn)的橫坐標(biāo)為1.
【小題1】(1)若方程①的根為正整數(shù),求整數(shù)k的值;
【小題2】(2)求代數(shù)式的值;
【小題3】(3)求證:關(guān)于x的一元二次方程ax2?bx+c="0" ②必有兩個不相等的實(shí)數(shù)根.
【小題1】解:(1)解:由kx=x+2,得(k-1)x=2.
依題意k-1≠0.∴. ……………………………………1分
∵方程的根為正整數(shù),k為整數(shù),∴k-1=1或k-1=2.
∴k1= 2,k2=3. …………………………………………………2分
【小題2】(2)解:依題意,二次函數(shù)y=ax2-bx+kc的圖象經(jīng)過點(diǎn)(1,0),
∴ 0 =a-b+kc, kc = b-a.
∴ = …3分
【小題3】(3)證明:方程②的判別式為Δ=(-b)2-4ac= b2-4ac. 由a≠0,c≠0,得ac≠0.
證法一:
(i)若ac<0,則-4ac>0.故Δ=b2-4ac>0.此時方程②有兩個不相等的實(shí)數(shù)根.……4分
(ii)若ac>0,由(2)知a-b+kc =0,故b=a+kc.
Δ=b2-4ac= (a+kc)2-4ac=a2+2kac+(kc)2-4ac = a2-2kac+(kc)2+4kac-4ac
=(a-kc)2+4ac(k-1). …………………………………………………5分
∵方程kx=x+2的根為正實(shí)數(shù),∴方程(k-1)x=2的根為正實(shí)數(shù).
由x>0, 2>0,得k-1>0. …………………………………6分
∴ 4ac(k-1)>0. ∵(a-kc)2³0,
∴Δ=(a-kc)2+4ac(k-1)>0.此時方程②有兩個不相等的實(shí)數(shù)根. …………7分
證法二:
(i)若ac<0,則-4ac>0.故Δ=b2-4ac>0.此時方程②有兩個不相等的實(shí)數(shù)根.……4分
(ii)若ac>0,∵拋物線y=ax2-bx+kc與x軸有交點(diǎn),
∴Δ1=(-b)2-4akc =b2-4akc³0.
(b2-4ac)-( b2-4akc)=4ac(k-1). 由證法一知k-1>0,
∴b2-4ac> b2-4akc³0.
∴Δ= b2-4ac>0.此時方程②有兩個不相等的實(shí)數(shù)根. …………………7分
綜上,方程②有兩個不相等的實(shí)數(shù)根.
證法三:由已知,,∴
可以證明和不能同時為0(否則),而,因此.
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(02)(解析版) 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2002年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com