【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類(lèi)比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線(xiàn)于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線(xiàn)交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
【答案】(1)①1;②40°;(2),90°;(3)AC的長(zhǎng)為3或2.
【解析】
(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;
②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;
(2)根據(jù)兩邊的比相等且?jiàn)A角相等可得△AOC∽△BOD,則,由全等三角形的性質(zhì)得∠AMB的度數(shù);
(3)正確畫(huà)圖形,當(dāng)點(diǎn)C與點(diǎn)M重合時(shí),有兩種情況:如圖3和4,同理可得:△AOC∽△BOD,則∠AMB=90°,,可得AC的長(zhǎng).
(1)問(wèn)題發(fā)現(xiàn):
①如圖1,
∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
(2)類(lèi)比探究:
如圖2,,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴ ,∠CAO=∠DBO,
在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸:
①點(diǎn)C與點(diǎn)M重合時(shí),如圖3,
同理得:△AOC∽△BOD,
∴∠AMB=90°,,
設(shè)BD=x,則AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x-2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x2)2=(2)2,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
∴AC=3;
②點(diǎn)C與點(diǎn)M重合時(shí),如圖4,
同理得:∠AMB=90°,,
設(shè)BD=x,則AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x+2)2=(2)2.
x2+x-6=0,
(x+3)(x-2)=0,
x1=-3,x2=2,
∴AC=2;.
綜上所述,AC的長(zhǎng)為3或2.
點(diǎn)睛:本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,幾何變換問(wèn)題,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運(yùn)用類(lèi)比的思想解決問(wèn)題,本題是一道比較好的題目.
【題型】解答題
【結(jié)束】
25
【題目】如圖,已知拋物線(xiàn)y=ax2+bx﹣3(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),B(﹣1,0).
(1)求該拋物線(xiàn)的解析式;
(2)若以點(diǎn)A為圓心的圓與直線(xiàn)BC相切于點(diǎn)M,求切點(diǎn)M的坐標(biāo);
(3)若點(diǎn)Q在x軸上,點(diǎn)P在拋物線(xiàn)上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2﹣2x﹣3;(2)M (3)P的坐標(biāo)為(1+ ,3)或(1﹣,3)或(2,﹣3).
【解析】
(1)把點(diǎn)A(3,0),B(-1,0)代入二次函數(shù)表達(dá)式,即可求解;
(2)利用△AON≌△COB(AAS),求出N(0,-1),即可求解;
(3)分BC為平行四邊形的一條邊、BC為平行四邊形的對(duì)角線(xiàn)兩種情況,求解即可
解:(1)∵拋物線(xiàn)y=ax2+bx﹣3(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),B(﹣1,0).
∴ ,解得: ,
∴該拋物線(xiàn)解析式為y=x2﹣2x﹣3;
(2)若以點(diǎn)A為圓心的圓與直線(xiàn)BC相切于點(diǎn)M,則AM⊥BC,
如圖,過(guò)點(diǎn)A作AM⊥BC,垂足為點(diǎn)M,交y軸與點(diǎn)N.
把x=0代入y=x2﹣2x﹣3得,y=﹣3,
∴C(0,﹣3),
∵A(3,0),B(﹣1,0),
∴OA=OC,OB=1,
∵AM⊥BC,
∴∠AMB=∠AON=∠BOC=90°,
∴∠BAM+∠OBC=∠BAM+∠ONA=90°,
∴∠ONA=∠OBC,
∴△AON≌△COB(AAS),
∴ON=OB=1,
∴N(0,﹣1),
設(shè)直線(xiàn)AM解析式為y=k1x+b1,
把A(3,0),N(0,﹣1)分別代入得 ,
解得: ,
∴直線(xiàn)AM解析式為y=x﹣1…①,
設(shè)直線(xiàn)BC解析式為y=k2x+b2,
同理可得:直線(xiàn)BC解析式為y=﹣3x﹣3…②,
聯(lián)立①②并解得: ,
則M(﹣ ,﹣ );
(3)存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形,
①當(dāng)BC為平行四邊形的一條邊時(shí),如圖CBP′Q′,
點(diǎn)C(0,﹣3)向上3個(gè)單位、向左1個(gè)單位得到點(diǎn)B(﹣1,0),
同理點(diǎn)Q′(m,0)向上3個(gè)單位、向左1個(gè)單位得到點(diǎn)P′(m﹣1,3),
將點(diǎn)P′坐標(biāo)代入二次函數(shù)表達(dá)式并解得:x=2 ,
故點(diǎn)P′坐標(biāo)為(1+ ,3)或(1﹣,3);
②當(dāng)BC為平行四邊形的對(duì)角線(xiàn)時(shí),如圖CPBQ,
點(diǎn)P的坐標(biāo)為(2,﹣3);
P的坐標(biāo)為(1+,3)或(1﹣,3)或(2,﹣3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,CD與⊙O相切于點(diǎn)D,連結(jié)AD.
(1)求證:AD∥OC.
(2)小聰與小明在做這個(gè)題目的時(shí)候,對(duì)∠CDA與∠AOC之間的關(guān)系進(jìn)行了探究:
小聰說(shuō),∠CDA+∠AOC的值是一個(gè)固定的值;
小明說(shuō),∠CDA+∠AOC的值隨∠A度數(shù)的變化而變化.
若∠CDA+∠AOC的值為y,∠A度數(shù)為x.你認(rèn)為他們之中誰(shuí)說(shuō)的是正確的?若你認(rèn)為小聰說(shuō)的正確,請(qǐng)你求出這個(gè)固定值:若你認(rèn)為小明說(shuō)的正確,請(qǐng)你求出y與x之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷(xiāo)售,有關(guān)信息如表:
原進(jìn)價(jià)(元/張) | 零售價(jià)(元/張) | 成套售價(jià)(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元購(gòu)進(jìn)的餐桌數(shù)量與用160元購(gòu)進(jìn)的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場(chǎng)購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過(guò)200張.該商場(chǎng)計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷(xiāo)售,其余餐桌、餐椅以零售方式銷(xiāo)售.請(qǐng)問(wèn)怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)由于原材料價(jià)格上漲,每張餐桌和餐椅的進(jìn)價(jià)都上漲了10元,但銷(xiāo)售價(jià)格保持不變.商場(chǎng)購(gòu)進(jìn)了餐桌和餐椅共200張,應(yīng)怎樣安排成套銷(xiāo)售的銷(xiāo)售量(至少10套以上),使得實(shí)際全部售出后,最大利潤(rùn)與(2)中相同?請(qǐng)求出進(jìn)貨方案和銷(xiāo)售方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】永康市某校在課改中,開(kāi)設(shè)的選修課有:籃球,足球,排球,羽毛球,乒乓球,學(xué)生可根據(jù)自己的愛(ài)好選修一門(mén),李老師對(duì)九(1)班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).
(1)該班共有學(xué)生 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求“籃球”所在扇形圓心角的度數(shù);
(3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求△AHO的周長(zhǎng);
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線(xiàn)段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線(xiàn),與直線(xiàn)AC交于點(diǎn)E,與拋物線(xiàn)交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線(xiàn)上一點(diǎn)F作y軸的平行線(xiàn),與直線(xiàn)AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D、E分別在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,則BE=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AB為⊙O的直徑,延長(zhǎng)AB到點(diǎn)P,過(guò)點(diǎn)P作圓O的切線(xiàn),切點(diǎn)為C,連接AC,且AC=CP.
(1)求∠P的度數(shù);
(2)若點(diǎn)D是弧AB的中點(diǎn),連接CD交AB于點(diǎn)E,且DE·DC=20,求⊙O的面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某海盜船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處使,測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,求出此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng),結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com