精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,以點A為圓心,AC的長為半徑作 交AB于點E,以點B為圓心,BC的長為半徑作 交AB于點D,則陰影部分的面積為

【答案】π﹣2
【解析】解:∵∠ACB=90°,AC=BC=2, ∴SABC= ×2×2=2,
S扇形BCD= = π,
S空白=2×(2﹣ π)=4﹣π,
S陰影=SABC﹣S空白=2﹣4+π=π﹣2,
所以答案是π﹣2.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,A點坐標為(2,4),B點坐標為(﹣3,﹣2),C點坐標為(3,1).

(1)在圖中畫出△ABC關于y軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD的邊長是4,點P是AD邊的中點,點E是正方形邊上的一點.若△PBE是等腰三角形,則腰長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.

(1)猜想PM與PN的數量關系及位置關系,請直接寫出結論;
(2)現將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數量關系,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究與發(fā)現:

探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內角的和.那么,三角形的一個內角與它不相鄰的兩個外角的和之間存在何種數量關系呢?

已知:如圖1FDCECD分別為ADC的兩個外角,試探究AFDC+ECD的數量關系為:____________________(直接寫出結果).

探究二:三角形的一個內角與另兩個內角的平分線所夾的鈍角之間有何種關系?

已知:如圖2,在ADC中,DP,CP分別平分ADCACD,試探究PA的數量關系為:____________________(直接寫出結果).

探究三:若將ADC改為任意四邊形ABCD呢?

已知:如圖3,在四邊形ABCD中,DP,CP分別平分ADCBCD,試利用上述結論探究PA+B的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長方形ABCD中,AB=8,AD=4.點Q與點P同時從點A出發(fā),點Q以每秒1個單位的速度沿A→D→C→B的方向運動,點P以每秒3個單位的速度沿A→B→C→D的方向運動,當P,Q兩點相遇時,它們同時停止運動.設Q點運動的時間為x(秒),在整個運動過程中,當APQ為直角三角形時,則相應的x的值或取值范圍是_______________

 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

我們知道的幾何意義是在數軸上數對應的點與原點的距離,=,也就是說,表示在數軸上數與數0對應的點之間的距離;這個結論可以推廣為表示在數軸上數與數對應的點之間的距離;

例1.解方程||=2.因為在數軸上到原點的距離為2的點對應的數為,所以方程||=2的解為

例2.解不等式|-1|>2.在數軸上找出|-1|=2的解如圖),因為在數軸上到1對應的點的距離等于2的點對應的數為-1或3,所以方程|-1|=2的解為=-1或=3,因此不等式|-1|>2的解集為<-1或>3.

例3.解方程|-1|+|+2|=5.由絕對值的幾何意義知,該方程就是求在數軸上到1和-2對應的點的距離之和等于5的點對應的的值.因為在數軸上1和-2對應的點的距離為3如圖,滿足方程的對應的點在1的右邊或-2的左邊.若對應的點在1的右邊,可得=2;若對應的點在-2的左邊,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.

參考閱讀材料,解答下列問題:

(1)方程|+3|=4的解為   

(2)解不等式:|-3|≥5;

(3)解不等式:|-3|+|+4|≥9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,BD平分∠ABC,CD平分∠ACB,過點DEFBC,與AB、AC分別相交于E、F,若已知AB=9AC=7,求AEF的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】填空并完成以下證明:

已知:點P在直線CD上,∠BAP+∠APD=180°,∠1=∠2.

求證:AB∥CD,∠E=∠F.

證明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性質)

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

同步練習冊答案