【題目】如圖,在△ABC中,點DAC的垂直平分線上.

(1)若AB=AD,∠BAD=26°,求∠B∠C的度數(shù);

(2)若AB=AD=DC,AC=BC,求∠C的度數(shù);

(3)若AC=6,△ABD的周長為13cm,求△ABC的周長.

【答案】(1)∠B=77°,∠C=38.5°;(2)36°;(3)19cm.

【解析】

(1)根據(jù)題意在等腰三角形BAD中求得∠ADB的度數(shù),根據(jù)垂直平分線的性質(zhì)得到AD=CD,即∠DAC=∠C,再根據(jù)三角形的外角等于不相鄰的兩個內(nèi)角和即可得解;

(2)設(shè)∠B=x°,根據(jù)等腰三角形的性質(zhì)得到關(guān)于x的方程,x+x+x=180,然后求解方程,最后求得∠C的度數(shù)即可;

(3)根據(jù)垂直平分線的性質(zhì)得到AD=CD,然后將相關(guān)線段相加即可得解.

解:(1)△ABD中,

∵AB=AD,∠BAD=26°,

∴∠B=∠ADB=(180°﹣26°)×=77°,

DAC的垂直平分線上,

∴AD=DC,

∴∠C=77°=38.5°;

(2)設(shè)∠B=x°,

∵CA=CB,

∴∠A=∠CAB=x°,

∵AB=AD=DC,

∴∠B=∠ABD=x°,∠C=x°,

△ABC中,x+x+x=180,

解得:x=72,

∴∠C=×72°=36°.

∠C的度數(shù)是36°;

(3)∵DAC的垂直平分線上,

∴DA=DC,

∵△ABD的周長為13cm

∴AB+BD+AD=13cm,

AB+BD+DC=13cm,

∴AB+BC+AC=13+6=19cm,

∴△ABC的周長為19cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的內(nèi)容,再解決問題,

例題:若m2+2mn+2n2﹣6n+9=0,求mn的值.

解:∵m2+2mn+2n2﹣6n+9=0

m2+2mn+n2+n2﹣6n+9=0

m+n2+n﹣32=0

m+n=0,n﹣3=0

m=﹣3,n=3

問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

2)已知ab,cABC的三邊長,滿足a2+b2=10a+8b﹣41,且cABC中最長的邊,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=mx2+(m2﹣m)x﹣2m+1的圖象與x軸交于點A、B,與y軸交于點C,頂點D的橫坐標為1.

(1)求二次函數(shù)的表達式及A、B的坐標;
(2)若P(0,t)(t<﹣1)是y軸上一點,Q(﹣5,0),將點Q繞著點P順時針方向旋轉(zhuǎn)90°得到點E.當點E恰好在該二次函數(shù)的圖象上時,求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點,且∠DAE=∠MCB,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x,y的方程(n-2)x2m+3+3y5|n|-9=4.

(1)若方程是二元一次方程,求m2+n2的值;

(2)若方程是一元一次方程,求m,n的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某幼兒園舉行用火柴棒擺“金魚”比賽,如圖所示請仔細觀察并找出規(guī)律,解答下列問題:

(1)按照此規(guī)律,擺第n個圖時,需用火柴棒的根數(shù)是多少?

(2)求擺第50個圖時所需用的火柴棒的根數(shù);

(3)按此規(guī)律用1202根火柴棒擺出第n個圖形,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,ABBC,DAC上一點,AEBD,交BD的延長線于E,CFBDF.

(1)求證:CFBE;

(2)BD=2AE,求證:∠EADABE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①BE= AC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,拋物線y=ax2+bx+2過點A(﹣3,0)、B (1,0),與y軸交于點C,拋物線的頂點為D,點G在拋物線上且其縱坐標為2.
(1)a= , b= , D().
(2)P是線段AB上一動點(點P不與A、B重合),點P作x軸的垂線交拋物線于點E.
①若PE=PB,試求E點坐標;
②在①的條件下,PE、DG交于點M,在線段PE上是否存一點N,使得△DMN與△DCO相似?若存在,試求出相應點的坐標;
③在①的條件下,點F是坐標軸上一點,且點F到EC、ED的距離相等,試直接寫出EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°,

1)求證:DEBC

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

同步練習冊答案