【題目】兩個(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地,設(shè)第二組的步行速度為x千米/小時(shí),根據(jù)題意可列方程是( ).
A.B.
C.D.
【答案】D
【解析】
根據(jù)第二組的速度可得出第一組的速度,依據(jù)“時(shí)間=路程÷速度”即可找出第一、二組分別到達(dá)的時(shí)間,再根據(jù)第一組比第二組早15分鐘(小時(shí))到達(dá)乙地即可列出分式方程,由此即可得出結(jié)論.
解:設(shè)第二組的步行速度為x千米/小時(shí),則第一組的步行速度為1.2x千米/小時(shí),
第一組到達(dá)乙地的時(shí)間為:7.5÷1.2x;
第二組到達(dá)乙地的時(shí)間為:7.5÷x;
∵第一組比第二組早15分鐘(小時(shí))到達(dá)乙地,
∴列出方程為:.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知購買1個(gè)足球和1個(gè)籃球共需150元,購買2個(gè)足球和1個(gè)籃球共需200元.
(1)求每個(gè)足球和每個(gè)籃球的售價(jià);
(2)如果某校計(jì)劃購買這兩種球共50個(gè),總費(fèi)用不超過4000元,最多可以買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個(gè)底面為長方形(長為a厘米,寬為b厘米)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
A. 4a厘米B. 4b厘米C. 2(a+b)厘米D. 4(a-b)厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條公路上順次有、、三地,甲、乙兩車同時(shí)從地出發(fā),分別勻速前柱地、地,甲車到達(dá)地停留一段時(shí)間后原速原路返回,乙車到達(dá)地后立即原速原路返回(掉頭時(shí)間忽略不計(jì)),乙車比甲車早1小時(shí)返回地,甲、乙兩車各自行駛的路程(千米)與時(shí)間(時(shí))(從兩車出發(fā)時(shí)開始計(jì)時(shí))之間的變化情況如圖所示.
(1)在這個(gè)變化過程中,自變量是______,因變量是______.
(2)甲車到達(dá)地停留的時(shí)長為______小時(shí),乙車從出發(fā)到返回地共用了______小時(shí).
(3)甲車的速度是______千米/時(shí),乙車的速度是______千米/時(shí).
(4)、兩地相距______千米,甲車返回地途中與之間的關(guān)系式是______(不必寫出自變量取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高新一中新圖書館在“校園書香四溢”活動(dòng)中迎來了借書高潮,上周借書記錄如下表:(超過100冊的部分記為正,少于100冊的部分記為負(fù))
(1)上星期借書最多的一天比借書最少的一天多借出圖書多少冊?
(2)上星期平均每天借出多少冊書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,.點(diǎn)在上,BC、ED相交于點(diǎn)F,FE=FC,AB=DC,CF平分∠ACE.
(1)與相等嗎?請(qǐng)說明理由;
(2)請(qǐng)說明是中點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過C點(diǎn),M為EF的中點(diǎn),則下列結(jié)論正確的序號(hào)是___.①當(dāng)x=3時(shí),EC<EM;②當(dāng)y=9時(shí),EC>EM③當(dāng)x增大時(shí),ECCF的值增大;④當(dāng)y增大時(shí),BEDF的值不變。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com