【題目】某醫(yī)藥研究所研發(fā)了一種新藥,試驗(yàn)藥效時發(fā)現(xiàn):1.5小時內(nèi),血液中含藥量y(微克)與時間x(小時)的關(guān)系可近似地用二次函數(shù)yax2+bx表示;1.5小時后(包括1.5小時),yx可近似地用反比例函數(shù)yk0)表示,部分實(shí)驗(yàn)數(shù)據(jù)如表:

時間x(小時)

0.2

1

1.8

含藥量y(微克)

7.2

20

12.5

1)求abk的值;

2)服藥后幾小時血液中的含藥量達(dá)到最大值?最大值為多少?

3)如果每毫升血液中含藥量不少于10微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間.(1.41,精確到0.1小時)

【答案】1a=﹣20,b40,k22.5;(2)服藥后1小時血液中的含藥量達(dá)到最大值,最大值為20微克;(3)成人按規(guī)定劑量服用該藥一次后能維持2.0小時的有效時間.

【解析】

1)根據(jù)表格信息代入數(shù)值列方程組求解即可;

2)由(1)得到y=﹣20x2+40x,化為頂點(diǎn)式即可得到結(jié)果;

3)令y=10求出x的值就是所求的結(jié)果;

1)設(shè)1.5小時內(nèi),血液中含藥量y(微克)與時間x(小時)的關(guān)系為yax2+bx,

根據(jù)表格得:

解得:a=﹣20,b40,

1.5小時后(包括1.5小時),yx可近似地用反比例函數(shù)yk0),根據(jù)表格得:

k1.8×12.522.5

a=﹣20,b40k22.5;

2)由(1)知y=﹣20x2+40x

y=﹣20x12+20,

∴服藥后1小時血液中的含藥量達(dá)到最大值,最大值為20微克;

3)當(dāng)y10時,10=﹣20x2+40x,或10,

解得:x1x1+x>1.5,不合題意舍去,x2.25,

∴成人按規(guī)定劑量服用該藥一次后能維持2.25﹣(1)≈2.0小時的有效時間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為12.求大樹BC的高度約為多少米?(≈1.732,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由特殊到一般、類比、轉(zhuǎn)化是數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到的思想方法,下面是對一道幾何題進(jìn)行變式探究的思路,請你運(yùn)用上述思想方法完成探究任務(wù).

問題情境:在四邊形中,是對角線,為邊上一點(diǎn),連接.為旋轉(zhuǎn)中心,將線段順時針旋轉(zhuǎn),旋轉(zhuǎn)角與相等,得到線段,連接

1)特例如圖1,若四邊形是正方形,則位置關(guān)系是_________.此時可以過點(diǎn)的平行線來對結(jié)論進(jìn)行證明(這里不要求證明)

2)拓展探究:如圖2,若四邊形是菱形,當(dāng)時,求的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸、y軸分別相交于AB兩點(diǎn),與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,且點(diǎn)B的中點(diǎn).

1)求點(diǎn)C的坐標(biāo)及k的值;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個矩形的面積為96000000cm2,第一次截去它的,第二次截去剩下的,如此截下去,第六次截去后剩余圖形的面積為_____cm2,用科學(xué)記數(shù)法表示剩余圖形的面積為_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過點(diǎn)C的切線交AB的延長線于點(diǎn)E,ADECEC的延長線于點(diǎn)D,AD交⊙OF,F(xiàn)MABH,分別交⊙O、ACM、N,連接MB,BC.

(1)求證:AC平分∠DAE;

(2)若cosM=,BE=1,①求⊙O的半徑;②求FN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠C=90°,點(diǎn)DAC上,且CD>DA,DA=2.點(diǎn)P、Q同時從D點(diǎn)出發(fā),以相同的速度分別沿射線DC、射線DA運(yùn)動.過點(diǎn)QAC的垂線段QR,使QR=PQ,聯(lián)接PR.當(dāng)點(diǎn)Q到達(dá)A時,點(diǎn)P、Q同時停止運(yùn)動.設(shè)PQ=x△PQR△ABC重合部分的面積為SS關(guān)于x的函數(shù)圖像如圖2所示(其中0<x≤,<x≤m時,函數(shù)的解析式不同)

1)填空:n的值為___________;

2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ymx+nm≠0)的圖象與反比例函數(shù)yk≠0)的圖象交于第二、四象限內(nèi)的點(diǎn)A(a4)和點(diǎn)B(8,﹣1)

1)分別求出一次函數(shù)和反比例函數(shù)的解析式;

2)延長AO與反比例函數(shù)交于點(diǎn)C,連接BC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(JNapier,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)概念建立之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Euler,1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.對數(shù)的定義:一般地,若,則叫做以為底的對數(shù),記作.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):.理由如下:設(shè),,所以,所以,由對數(shù)的定義得,又因?yàn)?/span>,所以.解決以下問題:

1)將指數(shù)轉(zhuǎn)化為對數(shù)式:

2)仿照上面的材料,試證明:

3)拓展運(yùn)用:計算

查看答案和解析>>

同步練習(xí)冊答案