【題目】閱讀以下材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾(JNapier,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)概念建立之前,直到18世紀瑞士數(shù)學家歐拉(Euler,1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.對數(shù)的定義:一般地,若,則叫做以為底的對數(shù),記作.比如指數(shù)式可以轉化為,對數(shù)式可以轉化為.我們根據對數(shù)的定義可得到對數(shù)的一個性質:.理由如下:設,,所以,,所以,由對數(shù)的定義得,又因為,所以.解決以下問題:

1)將指數(shù)轉化為對數(shù)式:

2)仿照上面的材料,試證明:

3)拓展運用:計算

【答案】1;(2)見解析;(32

【解析】

1)根據題意可以把指數(shù)式53=125寫成對數(shù)式;

2)先設logaM=xlogaN=y,根據對數(shù)的定義可表示為指數(shù)式為:M=ax,N=ay,計算的結果,同理由所給材料的證明過程可得結論;

3)根據公式:logaMN=logaM+logaN的逆用,將所求式子表示為:log32×18÷4),計算可得結論.

1)∵一般地,若ax=Na0a≠1),那么x叫做以a為底N的對數(shù),記作:記作:x=logaN
3=log5125,
故答案為:3=log5125

2)證明:設

,,

由對數(shù)的定義得

又∵,

3 log32×18÷4= log39=2.

故答案為:2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某醫(yī)藥研究所研發(fā)了一種新藥,試驗藥效時發(fā)現(xiàn):1.5小時內,血液中含藥量y(微克)與時間x(小時)的關系可近似地用二次函數(shù)yax2+bx表示;1.5小時后(包括1.5小時),yx可近似地用反比例函數(shù)yk0)表示,部分實驗數(shù)據如表:

時間x(小時)

0.2

1

1.8

含藥量y(微克)

7.2

20

12.5

1)求a、bk的值;

2)服藥后幾小時血液中的含藥量達到最大值?最大值為多少?

3)如果每毫升血液中含藥量不少于10微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間.(1.41,精確到0.1小時)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+分別與x軸、y軸交于B、C兩點,點A在x軸上,ACB=90°,拋物線y=ax2+bx+經過A,B兩點.

(1)求A、B兩點的坐標;

(2)求拋物線的解析式;

(3)點M是直線BC上方拋物線上的一點,過點M作MHBC于點H,作MDy軸交BC于點D,求DMH周長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC4,點EA邊上一點,且AE,點F是邊BC上的任意一點,把BEF沿EF翻折,點B的對應點為G,連接AGCG,則四邊形AGCD的面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB90°,∠OAB30°,反比例函數(shù)y1的圖象經過點A,反比例函數(shù)y2的圖象經過點B,則下列關于m,n的關系正確的是(  )

A.mnB.m=﹣nC.m=﹣nD.m=﹣3n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經過點A,反比例函數(shù)y2=的圖象經過點B,則m的值是( 。

A.m=3B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情防控,我們一直在堅守.某居委會組織兩個檢查組,分別對居民體溫居民安全出行的情況進行抽查.若這兩個檢查組在轄區(qū)內的某三個校區(qū)中各自隨機抽取一個小區(qū)進行檢查,則他們恰好抽到同一個小區(qū)的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關注,為此媒體記者隨機調查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調查結果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據圖中提供的信息,解答下列問題:

(1)此次抽樣調查中,共調查了   名學生;

(2)將圖1、圖2補充完整;

(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處.

(1)求證:四邊形AECF是平行四邊形;

(2)ABAC滿足怎樣數(shù)量關系時,四邊形AECF為菱形.

查看答案和解析>>

同步練習冊答案