【題目】(1)如圖1,PA、PB是⊙O的兩條弦,AB為直徑,C的中點,弦CDPA于點E,寫出ABAC的數(shù)量關(guān)系,并證明;

(2)如圖2,PA、PB是⊙O的兩條弦,AB為弦,C為劣弧的中點,弦CDPAE,寫出AE、PEPB的數(shù)量關(guān)系,并證明.

【答案】(1)AB=AC(2)AE=PB+PE.

【解析】

(1)ABAC

證明:AB為直徑,C的中點,

ABC是等腰直角三角形.

ABAC

(2)AEPBPE

證明:在AE上截取AFBP,連接AC、BC、FCPC

C為劣弧的中點,,

ACBC

CAFCBP,

AC=BC,∠CAF=∠CBP,AF=BP

CAFCBP

CFCP

CDPAE,

EFEP

AEAFEFPBPE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字21,﹣3﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n

1)請畫出樹狀圖并寫出(mn)所有可能的結(jié)果;

2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(0,2),(3,2),(2,3).

(1)請在圖中畫出△ABC向下平移3個單位的像△A′B′C′;

(2)若一個二次函數(shù)的圖象經(jīng)過(1)中△A′B′C′的三個頂點,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將號碼分別為1,2,3,…,9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球,號碼為a,放回后乙再摸出一個球,號碼為b,則使不等式成立的事件發(fā)生的概率為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一假日期間,某網(wǎng)店為了促銷,設(shè)計了一種抽獎送積分活動,在該網(wǎng)店網(wǎng)頁上顯示如圖所示的圓形轉(zhuǎn)盤,轉(zhuǎn)盤被均等的分成四份,四個扇形上分別標(biāo)有謝謝惠顧、“10、“20、“40字樣.參與抽獎的顧客只需用鼠標(biāo)點擊轉(zhuǎn)盤,指針就會在轉(zhuǎn)動的過程中隨機(jī)的停在某個扇形區(qū)域,指針指向扇形上的積分就是顧客獲得的獎勵積分,凡是在活動期間下單的顧客,均可獲得兩次抽獎機(jī)會,求兩次抽獎顧客獲得的總積分不低于30分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲乙兩人每次同時從袋中各隨機(jī)摸出1個小球,并計算摸出的這2個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗,試驗數(shù)據(jù)如圖:

解答下列問題:

(1)如果試驗繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為8”的概率是 .

(2)如果摸出的這兩個小球上的數(shù)字之和為9的概率是,那么x的值可以取7嗎?請用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD,AB=3cm,B為圓心,1cm為半徑畫圓PB上一個動點,連接AP并將AP繞點A逆時針旋轉(zhuǎn)90°至AP',連接BP',在點P移動的過程中,BP'長度的取值范圍是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在等邊ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點C順時針旋轉(zhuǎn)60°得到P'C,連接AP',則sinPAP'的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點,與y軸交于點C,點M為拋物線的頂點,且OC=OB.

(1)求拋物線的解析式.

(2)若拋物線上有一點P,連PC交線段BMQ點,且SBPQ=SCMQ,求P點的坐標(biāo).

(3)把拋物線沿x軸正半軸平移n個單位,使平移后的拋物線交直線BCE、F兩點,且E、F關(guān)于點B對稱,求n的值.

查看答案和解析>>

同步練習(xí)冊答案