【題目】如圖,已知雙曲線y= (k>0)經(jīng)過Rt△OAB的直角邊AB的中點(diǎn)C,與斜邊OB相交于點(diǎn)D,若OD=1,則BD=

【答案】 ﹣1
【解析】解:設(shè)D的坐標(biāo)為(a,b),BD=x 過D作DE⊥AO于E,則OE=a,DE=b
由DE∥BA可得,△OED∽△OAB
,即
∴AO=a+ax,AB=b+bx
∴B(a+ax,b+bx)
又∵點(diǎn)C為AB的中點(diǎn)
∴C(a+ax, b+ bx)
∵點(diǎn)C、D都在反比例函數(shù)y= 的圖象上
∴k=a×b=(a+ax)×( b+ bx)
整理得,(1+x)2=2
解得x= ﹣1
∴BD的長為: ﹣1
所以答案是: ﹣1

【考點(diǎn)精析】根據(jù)題目的已知條件,利用反比例函數(shù)的概念和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握形如y=k/x(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).自變量x的取值范圍是x不等于0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù);相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC中,OA=2,AB=4,雙曲線 (k>0)與矩形兩邊AB、BC分別交于E、F.

(1)若E是AB的中點(diǎn),求F點(diǎn)的坐標(biāo);
(2)若將△BEF沿直線EF對(duì)折,B點(diǎn)落在x軸上的D點(diǎn),作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)正方體的展開圖,標(biāo)注了字母,的面分別是正方體的正面和底面,其他面分別用字母,,表示.已知,,,,

(1)如果正方體的左面與右面所標(biāo)注字母代表的代數(shù)式的值相等,求出的值;

(2)如果正面字母代表的代數(shù)式與對(duì)面字母代表的代數(shù)式的值相等,且為整數(shù),求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算機(jī)系統(tǒng)對(duì)文件的管理通常采用樹形目錄結(jié)構(gòu),方式如圖在一個(gè)根目錄下建立若干子目錄(這里稱第一層目錄),每個(gè)子目錄又可作為父目錄向下繼續(xù)建立其子目錄(這里稱第二層目錄),依次進(jìn)行可創(chuàng)建多層目錄.現(xiàn)在一根目錄下建立了四層目錄,并且每一個(gè)父目錄下的子目錄的個(gè)數(shù)都相同都等于根目錄下目錄的個(gè)數(shù).已知第三層目錄共有343個(gè),求這一根目錄下的所有目錄的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為a的正方形中挖掉一個(gè)邊長為bba)的小正方形,把余下的部分剪拼成一個(gè)長方形.通過計(jì)算陰影部分的面積,驗(yàn)證了一個(gè)等式,這個(gè)等式是(  )

A. a2b2=ab)(ab B. ab2=a22abb2

C. ab2=a22abb2 D. a2ab=aab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)圓,一只電子跳蚤在標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳躍.若它停在奇數(shù)點(diǎn)上時(shí),則一次沿順時(shí)針方向跳兩個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上時(shí),則下一次沿逆時(shí)針方向跳一個(gè)點(diǎn).若這只跳蚤從1這點(diǎn)開始跳,則經(jīng)過2019次跳后它所停在的點(diǎn)對(duì)應(yīng)的數(shù)為( )

A. 1 B. 2 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

在學(xué)習(xí)“分式方程及其解法”過程中,老師提出一個(gè)問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?

經(jīng)過獨(dú)立思考與分析后,小明和小聰開始交流解題思路如下:

小明說:解這個(gè)關(guān)于x的分式方程,得到方程的解為.由題意可得,所以,問題解決.

小聰說:你考慮的不全面.還必須保證才行.

請(qǐng)回答:_______________的說法是正確的,并說明正確的理由是:__________________.

完成下列問題:

(1)已知關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍;

(2)若關(guān)于x的分式方程無解.直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,已知ABCD,BE、CF分別平分∠ABC和∠DCB,求證:BECF

證明:∵ABCD,(已知)

∴∠_______=∠__________________________________

__________________________________________,(已知)

∴∠EBC=_______,(角平分線定義)

同理,∠FCB=______________

∴∠EBC=∠FCB.(等式性質(zhì))

BE//CF_____________________________________

查看答案和解析>>

同步練習(xí)冊(cè)答案