【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求H點(diǎn)的坐標(biāo)及k的值;
(2)點(diǎn)P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點(diǎn)坐標(biāo);
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),點(diǎn)Q(m,0)是x軸上的動點(diǎn),當(dāng)△MNQ的面積為3時(shí),請求出所有滿足條件的m的值.
【答案】(1)k=4;(2)點(diǎn)P的坐標(biāo)為(0,6)或(0,2+),或(0,2﹣);(3)m=7或3.
【解析】
(1)先求出OA=2,結(jié)合tan∠AHO=2可得OH的長,即可得知點(diǎn)M的橫坐標(biāo),代入直線解析式可得點(diǎn)M坐標(biāo),代入反比例解析式可得k的值;
(2)分AM=AP和AM=PM兩種情況分別求解可得;
(3)先求出點(diǎn)N(4,1),延長MN交x軸于點(diǎn)C,待定系數(shù)法求出直線MN解析式為y=-x+5.據(jù)此求得OC=5,再由S△MNQ=S△MQC-S△NQC=3知QC=2,再進(jìn)一步求解可得.
(1)由y=2x+2可知A(0,2),即OA=2,
∵tan∠AHO=2,
∴OH=1,
∴H(1,0),
∵MH⊥x軸,
∴點(diǎn)M的橫坐標(biāo)為1,
∵點(diǎn)M在直線y=2x+2上,
∴點(diǎn)M的縱坐標(biāo)為4,即M(1,4),
∵點(diǎn)M在y=上,
∴k=1×4=4;
(2)①當(dāng)AM=AP時(shí),
∵A(0,2),M(1,4),
∴AM=,
則AP=AM=,
∴此時(shí)點(diǎn)P的坐標(biāo)為(0,2﹣)或(0,2+);
②若AM=PM時(shí),
設(shè)P(0,y),
則PM= ,
∴=,
解得y=2(舍)或y=6,
此時(shí)點(diǎn)P的坐標(biāo)為(0,6),
綜上所述,點(diǎn)P的坐標(biāo)為(0,6)或(0,2+),或(0,2﹣);
(3)∵點(diǎn)N(a,1)在反比例函數(shù)y=(x>0)圖象上,
∴a=4,
∴點(diǎn)N(4,1),
延長MN交x軸于點(diǎn)C,
設(shè)直線MN的解析式為y=mx+n,
則有
解得,
∴直線MN的解析式為y=﹣x+5.
∵點(diǎn)C是直線y=﹣x+5與x軸的交點(diǎn),
∴點(diǎn)C的坐標(biāo)為(5,0),OC=5,
∵S△MNQ=3,
∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=3,
∴QC=2,
∵C(5,0),Q(m,0),
∴|m﹣5|=2,
∴m=7或3,
故答案為:7或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為2,CF=1,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,全校同時(shí)默寫50首古詩詞,每正確默寫出一首古詩詞得2分,結(jié)果有500名進(jìn)入決賽,從這500名的學(xué)生中隨機(jī)抽取50名學(xué)生進(jìn)行成績分析,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:(最高分98分):
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
Ⅰ.第3組的具體分?jǐn)?shù)為:70,70,70,72,72,74,74,74,76,76,78,78,78,78
Ⅱ.50人得分平均數(shù)、中位數(shù)、眾數(shù)如表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
得分(分) | m | n |
請結(jié)合圖表數(shù)據(jù)信息完成下列各題:
(1)填空a= ,m= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于80分為優(yōu)秀,估計(jì)進(jìn)入決賽的本次測試為的優(yōu)秀的學(xué)生有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某商場用8萬元購進(jìn)一批新款襯衫,上架后很快銷售一空,商場又緊急購進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價(jià)漲了4元/件,結(jié)果共用去17.6萬元.
(1)該商場第一批購進(jìn)襯衫多少件?
(2)商場銷售這種襯衫時(shí),每件定價(jià)都是58元,剩至150件時(shí)按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D
(1)求證:AC是⊙O的切線;
(2)如圖2,連接CD,若tan∠BCD=,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC>BC,分別以AB,BC,CA為一邊向△ABC外作正方形ABDE、BCMN,CAFG,連接EF、GM、ND,設(shè)△AEF、△BND、△CGM的面積分別為S1、S2、S3.
(1)猜想S1、S2、S3的大小關(guān)系.
(2)請對(1)的猜想,任選一個關(guān)系進(jìn)行證明;
(3)若將圖1中的Rt△ABC改為圖2中的任意△ABC,若SABC=5,求出S1+S2+S3的值;
(4)若將圖2中的任意△ABC改為任意凸四邊形ABCD,若S△AEG+S△CNK+S△IBH+S△DFM=α,則四邊形ABCD的面積為 (直接用含α的代數(shù)式表示結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形紙片,.對折矩形紙片,使與重合,折痕為;展平后再過點(diǎn)折疊矩形紙片,使點(diǎn)落在上的點(diǎn),折痕與相交于點(diǎn);再次展平,連接,,延長交于點(diǎn).以下結(jié)論:①;②;③;④△是等邊三角形; ⑤為線段上一動點(diǎn),是的中點(diǎn),則的最小值是.其中正確結(jié)論的序號是( ).
A. ①②④B. ①④⑤C. ①③④D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,拋物線C1:y=ax2﹣2x﹣3與拋物線C2:y=x2+mx+n關(guān)于y軸對稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).
(1)求拋物線C1,C2的函數(shù)表達(dá)式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com