【題目】如圖,已知是的直徑,、是半圓的弦,,,若,則的長(zhǎng)為________.
【答案】1
【解析】
根據(jù)已知可證△AOD為等邊三角形,∠P=30°,PA=AD=OA,再證明PD是切線,根據(jù)含30°角的直角三角形三邊的關(guān)系即可得出結(jié)果.
∵AB為直徑,∴∠ADB=90°.
∵∠BDE=60°,∴∠PDA=180°﹣90°﹣60°=30°,∴∠PBD=∠PDA=30°.
∵OB=OD,∴∠ODB=∠PBD=30°,∴∠ADO=60°,∴△ADO為等邊三角形,∠ODP=90°,∴AD=OA,∠AOD=60°,PD為⊙O的切線,∴∠P=30°,∴PO=2OD,PD=OD,∴OD=1,PO=2.
∵OA=OD=1,∴PA=2-1=1.
故答案為:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)是( )
A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)請(qǐng)直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=-1,且過點(diǎn)(-3,0).下列說法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說法正確的是( ).
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)和點(diǎn)的坐標(biāo)分別為,拋物線的對(duì)稱軸為,為拋物線的頂點(diǎn).
求拋物線的解析式.
拋物線的對(duì)稱軸上是否存在一點(diǎn),使為等腰三角形?若存在,寫出點(diǎn)點(diǎn)的坐標(biāo),若不存在,說明理由.
點(diǎn)為線段上一動(dòng)點(diǎn),過點(diǎn)作軸的垂線,與拋物線交于點(diǎn),求四邊形面積的最大值,以及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時(shí)間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;
(2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20 min到達(dá)公園,則小明在步行過程中停留的時(shí)間需作怎樣的調(diào)整?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)與矩形OABC在第一象限相交于D、E兩點(diǎn),OA=2,OC=4,連接OD、OE、DE.記△OAD、△OCE的面積分別為S、S .
(1)①點(diǎn)B的坐標(biāo)為 ;②S S(填“>”、“<”、“=”);
(2)當(dāng)點(diǎn)D為線段AB的中點(diǎn)時(shí),求k的值及點(diǎn)E的坐標(biāo);
(3)當(dāng)S+S=2時(shí),試判斷△ODE的形狀,并求△ODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過E作EF⊥AB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民在枯水期(當(dāng)年11月至第二年5月)節(jié)約用電,規(guī)定7:00至23:00為用電高峰期,此期間用電電費(fèi)y1(單位:元)與用電量x(單位:度)之間滿足的關(guān)系如圖所示;規(guī)定23:00至第二天早上7:00為用電低谷期,此期間用電電費(fèi)y2(單位:元)與用電量x(單位:元)之間滿足如表所示的一次函數(shù)關(guān)系.
(1)求y2與x的函數(shù)關(guān)系式;并直接寫出當(dāng)0≤x≤180和x>180時(shí),y1與x的函數(shù)關(guān)系式;
(2)若市民王先生一家在12月份共用電350度,支付電費(fèi)150元,求王先生一家在高峰期和低谷期各用電多少度.
低谷期用電量x度 | … | 80 | 100 | 140 | … |
低谷期用電電費(fèi)y2元 | … | 20 | 25 | 35 | … |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com