邊長(zhǎng)為2的等邊三角形的面積是(  )
A.2
3
B.
3
C.3D.6
AB=2,∵等邊三角形高線即中點(diǎn),

∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴AD=
AB2-BD2
=
3
,
∴等邊△ABC的面積為
1
2
BC•AD=
1
2
×2×
3
=
3

故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知OA=10,P是射線ON上的一動(dòng)點(diǎn)(即P點(diǎn)在射線ON上運(yùn)動(dòng)),且∠AON=60°.
(1)當(dāng)OP=______時(shí),△AOP為等邊三角形,此時(shí)∠APO的度數(shù)為______;
(2)當(dāng)△AOP為直角三角形時(shí),OP=______,此時(shí)∠APO的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長(zhǎng)分別為2、4、6的三個(gè)正三角形按如圖方式排列,A、B、C、D在同一直線上,則圖中陰影部分的面積的和為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在一個(gè)正方體的兩個(gè)面上畫了兩條對(duì)角線AB,AC,那么這兩條對(duì)角線的夾角等于______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABC和△ECD均為等邊三角形,B、C、D三點(diǎn)共線,AD與BE交于點(diǎn)O.求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90°,∠B=60°,AC=4,等邊△DEF的一邊在直角邊AC上移動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),點(diǎn)D恰好落在AB邊上,
(1)求等邊△DEF的邊長(zhǎng);
(2)請(qǐng)你探索,在移動(dòng)過程中,線段CE與圖中哪條線段始終保持相等,并說明理由;
(3)若設(shè)線段CE為x,在移動(dòng)過程中,等邊△DEF與Rt△ABC兩圖形重疊部分的面積為y.請(qǐng)你寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在等邊三角形ABC的邊BA,CB,AC的延長(zhǎng)線上分別截取AA′=BB′=CC′,那么△A′B′C′是______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC為等邊三角形,AB=6,P是AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),過點(diǎn)P作AB的垂線與BC相交于點(diǎn)D,以點(diǎn)D為正方形的一個(gè)頂點(diǎn),在△ABC內(nèi)作正方形DEFG,其中D、E在BC上,F(xiàn)在AC上,
(1)設(shè)BP的長(zhǎng)為x,正方形DEFG的邊長(zhǎng)為y,寫出y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)BP=2時(shí),求CF的長(zhǎng);
(3)△GDP是否可能成為直角三角形?若能,求出BP的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為10,點(diǎn)P是邊AB的中點(diǎn),Q為BC延長(zhǎng)線上一點(diǎn),CQ:BC=1:2,過P作PE⊥AC于E,連PQ交AC邊于D,求DE的長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案