(2007•海淀區(qū)二模)如圖,AB經(jīng)過⊙O的圓心,弦DF⊥AB于E,BF切⊙O于F,⊙O的半徑為2.
(1)求證:BD與⊙O相切;
(2)若∠ABD=∠DFC,求DF的長.
分析:(1)連接OD,OF,根據(jù)BF切⊙O于點F,得出∠OFB=90°,再根據(jù)弦DF⊥AB于E,且AB經(jīng)過圓心O,得出∠1=∠BFD,最后根據(jù)OD=OF,∠3=∠4,得出∠ODB=∠OFB=90°即可;
(2)根據(jù)(1)得∠3=∠5,根據(jù)∠2=∠5,得出∠2=∠3,再根據(jù)∠6=2∠2,得出∠6=2∠3,再根據(jù)∠6+∠3=90°,求出∠3的度數(shù),最后根據(jù)⊙O的半徑為2,即可求出DF的長.
解答:(1)證明:連接OD,OF.
∵BF切⊙O于點F,
∴∠OFB=90°,
∵弦DF⊥AB于E,且AB經(jīng)過圓心O,
∴DE=EF,
∴BD=BF.
∴∠1=∠BFD.
∵OD=OF,
∴∠3=∠4,
∴∠ODB=∠OFB=90°,
∴BD與⊙O相切;

(2)解:由(1)可知∠3=∠5,
∵∠2=∠5,
∴∠2=∠3.
又∵∠6=2∠2,
∴∠6=2∠3.
∵∠6+∠3=90°,
∴3∠3=90°.
∴∠3=30°,
∵OD=2,
∴DE=
3
,
∴DF=2
3
點評:此題考查了切線的判定與性質(zhì),用到的知識點是垂徑定理,圓心角與圓周角之間的關(guān)系,圓的有關(guān)性質(zhì)等,解題的關(guān)鍵是證出∠ODB=∠OFB=90°,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)在函數(shù)y=
x-3
中,自變量x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)如圖,BC平分∠ABD,AB∥CD,點E在CD的延長線上.若∠C=28°,則∠BDE的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)北京奧運會金牌創(chuàng)造性地將白玉圓環(huán)嵌在其中(如圖),這一設(shè)計不僅是對獲勝者的禮贊,也形象地詮釋了中華民族自古以來以“玉”比“德”的價值觀.若白玉圓環(huán)面積與整個金牌面積的比值為k,則下列各數(shù)與k最接近的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)若關(guān)于x的一元二次方程x2-5x+m=0有實數(shù)根,則m的取值范圍是
m≤
25
4
m≤
25
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)用“¤”定義一種運算:對于任意實數(shù)m、n和拋物線y=ax2,當(dāng)y=ax2¤(m,n)后都可得到y(tǒng)=a(x-m)2+n.例如:當(dāng)y=3x2¤(2,4)后得到y(tǒng)=3(x-2)2+4.當(dāng)函數(shù)y=x2¤(1,n)后得到了新函數(shù)的圖象(如圖所示),則n=
2
2

查看答案和解析>>

同步練習(xí)冊答案