精英家教網(wǎng)已知:如圖AB∥CD,EF交AB于G,交CD于F,F(xiàn)H平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度數(shù).
分析:由AB∥CD得到∠AGE=∠CFG,又FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.
解答:解:∵AB∥CD,
∴∠CFG=∠AGE=50°,
∴∠GFD=130°;
又FH平分∠EFD,
∴∠HFD=
1
2
∠EFD=65°;
∴∠BHF=180°-∠HFD=115°.
點評:兩直線平行時,應該想到它們的性質(zhì);由兩直線平行的關系可以得到角之間的數(shù)量關系,從而達到解決問題的目的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、已知,如圖AB=CD,BC=AD,∠B=23°,則∠D=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、完成下面的證明.
已知:如圖AB=CD,BE=CF,AF=DE.求證:△ABE≌△DCF.

證明:∵AF=DE(已知)
∴AF-EF=DE-EF(
等式性質(zhì)
)即AE=DF
在△ABE和△DCF中
∵AB=CD,BE=CF(
已知

AE=DF(
已證

∴△ABE≌△DCF(
SSS
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一條直線上.
求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、填寫下列推理中的空格
已知:如圖AB∥CD,EC∥FB
求證:∠B+∠C=180°
證明:∵AB∥CD   (已知)
∴∠
BGC
+∠C=180°(兩直線平行,同旁內(nèi)角互補)
EC∥FB
(已知)
∴∠B=∠BGC (
兩直線平行,內(nèi)錯角相等

∴∠B+∠C=180°(
等量代換

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖AB∥CD,∠1=∠2,EP⊥FP,則以下錯誤的是(  )

查看答案和解析>>

同步練習冊答案