【題目】矩形AOBC中,OB=4,OA=3.分別以OB、OA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B、C重合).過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E.
(1)當點F運動到邊BC的中點時,點E的坐標為__________;
(2)連接EF,求∠EFC的正切值;
(3)如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求BG的長度.
【答案】(1)E(2,3);(2);(3).
【解析】
(1)先確定出點C坐標,進而得出點F坐標,即可求出反比例函數(shù)解析式,再根據(jù)E點縱坐標為3即可確定E點坐標;
(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結(jié)論;
(3)過點E作EH⊥OB于H,先判斷出△EHG∽△GBF,根據(jù)相似三角形對應(yīng)邊成比例即可求出BG.
解:(1)∵OA=3,OB=4,
∴B(4,0),C(4,3),
∵F是BC的中點,
,
∵F在反比例函數(shù)圖象上,
,
∴反比例函數(shù)的解析式為,
∵E點的縱坐標為3,
∴E(2,3);
(2)∵F點的橫坐標為4,
,
∵E的縱坐標為3,
在Rt△CEF中,;
(3)如圖,由(2)知,,
過點E作EH⊥OB于H,
∴EH=OA=3,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折疊知,,,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
,
,即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BC和CD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,,反比例函數(shù)的圖象經(jīng)過矩形的頂點,且交邊于點,若為的中點,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知點A(-1,0), B(0,),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校數(shù)學(xué)興趣小組的同學(xué)要測量建筑物的高度,如圖,建筑物前有一段坡度為的斜坡,小明同學(xué)站在斜坡上的點處,用測角儀測得建筑物屋頂的仰角為,接著小明又向下走了米,剛好到達坡底處,這時測到建筑物屋頂的仰角為,、、、、、在同一平面內(nèi).若測角儀的高度米,則建筑物的高度約為( ).(精確到0.1米,參考數(shù)據(jù):,,)
A.38.6B.39.0C.40.0D.41.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com