【題目】中,,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連結(jié),,則下列結(jié)論:①②③為等邊三角形④若,則,則正確結(jié)論是________.
【答案】①②③④
【解析】
①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①正確;
②先證明△ABM∽△ACN,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②正確;
③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷③正確;
④根據(jù)P為BC邊的中點(diǎn)得出,求出∠ABC,根據(jù)三角形的內(nèi)角和定理求出∠ACB即可可判斷④正確.
解:①于點(diǎn),于點(diǎn),為邊的中點(diǎn),
,,
,故①正確;
②在與中,
,,
,
,
,故②正確;
③,于點(diǎn),于點(diǎn),
,
在中,,
點(diǎn)是的中點(diǎn),,,
,
,,
,
,
是等邊三角形,故③正確;
,(為的中點(diǎn)),
,
,
,
,
,故④正確;
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把直尺、三角尺和圓形螺母按如圖所示放置于桌面上,∠CAB=60°,若量出AD=6cm,則圓形螺母的外直徑是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在半圓O上,半徑OB=2,AD=10,點(diǎn)C在弧BD上移動(dòng),連接AC,H是AC上一點(diǎn),∠DHC=90°,連接BH,點(diǎn)C在移動(dòng)的過(guò)程中,BH的最小值是( 。
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的四個(gè)頂點(diǎn)都在上,點(diǎn)在上,若是上的一點(diǎn),且.
(Ⅰ)求證:≌,并指出可以通過(guò)怎樣的旋轉(zhuǎn)得到;
(Ⅱ)求線段、、之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我;A(chǔ)教育雜志社在我校九年級(jí)學(xué)生中開(kāi)展征文活動(dòng),征文主題只能從“愛(ài)國(guó)”、“敬業(yè)”、“誠(chéng)信”、“友善”四個(gè)主題中選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了了解選擇各種征文主題的學(xué)生人數(shù).隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)本次調(diào)查共抽取了多少名學(xué)生的征文,并將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)這次調(diào)查的四個(gè)主題的“眾數(shù)”為 ;
(3)如果我校九年級(jí)共有1500名學(xué)生,請(qǐng)估計(jì)選擇以“友善”為主題的九年級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時(shí)間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說(shuō)法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)D是BC中點(diǎn),AE∥BC,CE∥AD.
(1)求證:四邊形ADCE是菱形;
(2)過(guò)點(diǎn)D作DF⊥CE于點(diǎn)F,∠B=60°,AB=6,求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com