【題目】已知(x-2x+3=1,則x的值為

【答案】-33,或1

【解析】

試題根據(jù)乘方和零指數(shù)冪可得此題要分三種情況進(jìn)行討論:當(dāng)x-2=1時(shí);②x+3=0x-2≠0;當(dāng)x-2=-1x+3為偶數(shù)時(shí),分別計(jì)算出x的值即可.

試題解析:當(dāng)x-2=1時(shí),解得:x=3,

②x+3=0x-2≠0,解得:x=-3;

當(dāng)x-2=-1,x+3為偶數(shù)時(shí),解得:x=1,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用不等式表示“x的4倍與7的和是不大于10”是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線ly軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t 秒(0≤t≤4),則能大致反映St的函數(shù)關(guān)系的圖象是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第一象限,AD平行于軸,且AB=2AD=4,點(diǎn)A的坐標(biāo)為(26).

1)直接寫(xiě)出B、C、D三點(diǎn)的坐標(biāo).

2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的兩邊長(zhǎng)分別為35,且周長(zhǎng)為整數(shù),則這樣的三角形共有 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,那么a1+a2+a3+…a100= 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】洲際彈道導(dǎo)彈的速度會(huì)隨著時(shí)間的變化而變化,某種型號(hào)的洲際彈道導(dǎo)彈的速度v(km/h)與時(shí)間t(h)的關(guān)系是v=100050t,若導(dǎo)彈發(fā)出0.5h即將擊中目標(biāo),則此時(shí)該導(dǎo)彈的速度應(yīng)為________km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年5月的第二周為:“職業(yè)教育活動(dòng)周”,今年我市展開(kāi)了以“弘揚(yáng)工匠精神,打造技能強(qiáng)國(guó)”為主題的系列活動(dòng),活動(dòng)期間某職業(yè)中學(xué)組織全校師生并邀請(qǐng)學(xué)生家長(zhǎng)和社區(qū)居民參加“職教體驗(yàn)觀摩”活動(dòng),相關(guān)職業(yè)技術(shù)人員進(jìn)行了現(xiàn)場(chǎng)演示,活動(dòng)后該校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查:“你最感興趣的一種職業(yè)技能是什么?”并對(duì)此進(jìn)行了統(tǒng)計(jì),繪制了統(tǒng)計(jì)圖(均不完整).

(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)若該校共有3000名學(xué)生,請(qǐng)估計(jì)該校對(duì)“工藝設(shè)計(jì)”最感興趣的學(xué)生有多少人?

(3)要從這些被調(diào)查的學(xué)生中隨機(jī)抽取一人進(jìn)行訪談,那么正好抽到對(duì)“機(jī)電維修”最感興趣的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MNAD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BM、DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案