【題目】如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣40),點B的坐標是(0b)(b0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關于y軸的對稱點為P(點P不在y軸上),連接PPPA,PC.設點P的橫坐標為a

1)當b=3時,

求直線AB的解析式;

若點P′的坐標是(﹣1,m),求m的值;

2)若點P在第一象限,記直線ABPC的交點為D.當PDDC=13時,求a的值;

3)是否同時存在a,b,使△PCA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.

【答案】解:(1設直線AB的解析式為y=kx+3

x=﹣4,y=0代入得:﹣4k+3=0,

∴k=,

直線的解析式是:y=x+3,

由已知得點P的坐標是(1m),

∴m=×1+3=;

2∵PP′∥AC

△PP′D∽△ACD,

=,即=

∴a=;

3)以下分三種情況討論.

當點P在第一象限時,

1)若∠AP′C=90°,P′A=P′C(如圖1

過點P′P′H⊥x軸于點H

∴PP′=CH=AH=P′H=AC

2a=a+4

∴a=

∵P′H=PC=AC△ACP∽△AOB

==,即=

∴b=2

2)若∠P′AC=90°,P′A=CA

PP′=AC

2a=a+4

∴a=4

∵P′A=PC=AC,△ACP∽△AOB

==1,即=1

∴b=4

3)若∠P′CA=90°,

P′,P都在第一象限內,這與條件矛盾.

∴△P′CA不可能是以C為直角頂點的等腰直角三角形.

當點P在第二象限時,∠P′CA為鈍角(如圖3),此時△P′CA不可能是等腰直角三角形;

P在第三象限時,∠P′CA為鈍角(如圖4),此時△P′CA不可能是等腰直角三角形.

所有滿足條件的a,b的值為

【解析】

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=5,BC=8,點E為AD上一個動點,把△ABE沿BE折疊,點A的對應點為點F,連接DF,連接CF.當點F落在矩形內部,且CF=CD時,AE的長為( ).

A. 3B. 2.5C. 2D. 1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.

1sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3=

2)觀察上述等式猜想:在RtABC中,∠C=90°,總有sin2A+cos2A= ;

3)如圖2,在RtABC中證明(2)題中的猜想:

4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在直線y=x-1上,設過點P的直線交拋物線y=x2A(aa2),B(b,b2)兩點,當滿足PA=PB時,稱點P優(yōu)點”.

(1)a+b=0時,求優(yōu)點”P的橫坐標;

(2)優(yōu)點”P的橫坐標為3,求式子18a-9b的值;

(3)小安演算發(fā)現(xiàn):直線y=x-1上的所有點都是優(yōu)點,請判斷小安發(fā)現(xiàn)是否正確?如果正確,說明理由;如果不正確,舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①所示,在ABCADE中,ABACADAE,∠BAC=∠DAE,且點B,A,D在一條直線上,連接BECDM,N分別為BE,CD的中點.

1)求證:①BECD;②AMN是等腰三角形;

2)在圖①的基礎上,將ADE繞點A按順時針方向旋轉180°,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結論是否仍然成立;

3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:PBD∽△AMN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)發(fā)現(xiàn):如圖1,點A為線段BC外一動點,且BC=a,AB=b.當點A位于什么上時,線段AC的長取得最大值,且最大值為多少(用含a,b的式子表示)

(2)應用:點A為線段BC外一動點,且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.

①請找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(6,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年懷柔區(qū)中考體育加試女子800米耐力測試中,同時起跑的李麗和吳梅所跑的路程與所用時間之間的函數(shù)圖象分別為線段OA和折線下列說法正確的是

A. 李麗的速度隨時間的增大而增大

B. 吳梅的平均速度比李麗的平均速度大

C. 在起跑后180秒時,兩人相遇

D. 在起跑后50秒時,吳梅在李麗的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx的函數(shù),自變量x的取值范圍是x0的全體實數(shù),如表是yx的幾組對應值.

x

3

2

1

1

2

3

y

m

小華根據(jù)學習函數(shù)的經驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:

1)從表格中讀出,當自變量是﹣2時,函數(shù)值是   ;

2)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

3)在畫出的函數(shù)圖象上標出x2時所對應的點,并寫出m   

4)結合函數(shù)的圖象,寫出該函數(shù)的一條性質:   

查看答案和解析>>

同步練習冊答案