【題目】已知直線x=1是二次函數(shù)y=ax2+bx+c(a,b,c是實數(shù),且a≠0)的圖象的對稱軸,點A(x1,y1)和點B(x2,y2)為其圖象上的兩點,且y1<y2,( 。
A.若x1<x2,則x1+x2﹣2<0B.若x1<x2,則x1+x2﹣2>0
C.若x1>x2,則a(x1+x2-2)>0D.若x1>x2,則a(x1+x2-2)<0
【答案】D
【解析】
根據(jù)二次函數(shù)的性質(zhì)和題目中的條件,可以判斷各個選項中的式子是否正確,從而可以解答本題.
解:∵二次函數(shù)y=ax2+bx+c(a,b,c是實數(shù),且a≠0)的圖象的對稱軸,點A(x1,y1)和點B(x2,y2)為其圖象上的兩點,且y1<y2,
∴若, ,則可能出現(xiàn),故選項A錯誤;
若,,則x1+x2﹣2<0,故選項B錯誤;
若,,則x1+x2﹣2<0,則a(x1+x2-2)<0,故選項C錯誤;
若,x1>x2,則x1+x2﹣2<0,則 a(x1+x2-2)<0;
若,x1>x2,則x1+x2﹣2>0,則 a(x1+x2-2)<0;
故選項D正確;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B.C兩點,頂點D在正方形內(nèi)部.
(1)寫出點M(2,3)任意兩條特征線___________________
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設點P運動的時間為秒,正方形與重疊部分的面積為.
(1)用含有的代數(shù)式表示線段的長.
(2)當點落在的邊上時,求的值.
(3)求與的函數(shù)關系式.
(4)當點P在線段AD上運動時,做點N關于CD的對稱點,當與的某一個頂點的連線平分的面積時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,以的中點為圓心,以的長為直徑的交于點,交于點,過點作的切線,交于點.
(1)求證:;
(2)填空:
①若,,則的面積為____;
②當的度數(shù)為____時,四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學生共有______人,條形統(tǒng)計圖中m的值為______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù)為______;
(3)若該中學共有學生1800人,根據(jù)上述調(diào)查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(b,c是常數(shù))的圖象經(jīng)過點(1,﹣1).
(1)用含b的代數(shù)式表示c.
(2)求二次函數(shù)圖象的頂點縱坐標的最大值,并寫出此時二次函數(shù)的表達式.
(3)垂直于y軸的直線與(2)中所得的二次函數(shù)圖象交于(x1,y1)和(x2,y2),與一次函數(shù)y=﹣x+2的圖象交于(x3,y3),若x1<x2<x3,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一手機支架,其中AB=8cm,底座CD=1cm,當點A正好落在桌面上時如圖2所示,∠ABC=80°,∠A=60°.
(1)求點B到桌面AD的距離;
(2)求BC的長.(結果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C、D均在格點上.點E為直線CD上的動點,連接BE,作AF⊥BE于F.點P為BC邊上的動點,連接DP和PF.
(Ⅰ)當點E為CD邊的中點時,△ABF的面積為 ;
(Ⅱ)當DP+PF最短時,請在圖2所示的網(wǎng)格中,用無刻度的直尺畫出點P,并簡要說明點P的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表中給出,,三種手機通話的收費方式.
收費方式 | 月通話費/元 | 包時通話時間/ | 超時費/(元/) |
不限時 |
(1)設月通話時間為小時,則方案,,的收費金額,,都是的函數(shù),請分別求出這三個函數(shù)解析式.
(2)填空:
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
(3)小王、小張今年月份通話費均為元,但小王比小張通話時間長,求小王該月的通話時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com