如圖,在□ABCD中,AB=5,AD=10,cosB=,過BC的中點E作EF⊥AB,垂足為點F,連結DF,求DF的長.
解析試題分析:首先延長DC,F(xiàn)E相交于點H,由四邊形ABCD是平行四邊形,E是BC的中點,易得△BFE≌△CHE,又由cosB=,EF⊥AB,在Rt△BFE中,由三角函數(shù)的定義,可求得BF的長,由勾股定理,可求得EF、DH的長,然后在Rt△FHD中,由勾股定理,求得DF的長.
延長DC,F(xiàn)E相交于點H
∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,AD=BC,
∴∠B=∠ECH,∠BFE=∠H.
∵AB=5,AD=10,
∴BC=10,CD=5.
∵E是BC的中點,
∴BE=EC=BC=5.
∴△BFE≌△CHE(AAS),
∴CH=BF,EF=EH.
∵EF⊥AB,
∴∠BFE=∠H=90°.
在Rt△BFE中,
∵cosB=
∴BF=CH=3.
∴,DH=8.
在Rt△FHD中,∠H=90°,
∴
考點:平行四邊形的性質、全等三角形的判定與性質、勾股定理以及三角函數(shù)
點評:此題難度適中,注意掌握輔助線的作法是解此題的關鍵,同時注意數(shù)形結合思想的應用.
科目:初中數(shù)學 來源: 題型:
29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com