【題目】如圖,矩形ABCD的邊長(zhǎng)AD=6,AB=4,E為AB的中點(diǎn),F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M、N,則MN的長(zhǎng)為_____.
【答案】
【解析】
首先過F作FH⊥AD于H,交ED于O,于是得到FH=AB=4,根據(jù)勾股定理求得AF,根據(jù)平行線分線段成比例定理求得OH,由相似三角形的性質(zhì)求得AM與AF的長(zhǎng),根據(jù)相似三角形的性質(zhì),求得AN的長(zhǎng),即可得到結(jié)論.
過F作FH⊥AD于H,交ED于O,則FH=AB=4,
∵BF=2FC,BC=AD=6,
∴BF=AH=4,FC=HD=2,
∴AF=,
∵OH∥AE,
∴,
∴OH=AE=,
∴OF=FH﹣OH=4﹣=,
∵AE∥FO,
∴△AME∽FMO,
∴,
∴AM=AF=,
∵AD∥BF,
∴△AND∽△FNB,
∴,
∴AN=AF=,
∴MN=AN﹣AM=-=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解全校3000名學(xué)生對(duì)學(xué)校設(shè)置的足球、籃球、乒乓球、羽毛球、排球共五項(xiàng)球類活動(dòng)的喜愛情況,在全校范圍內(nèi)隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種)進(jìn)行了問卷調(diào)查,將統(tǒng)計(jì)數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)m= ,n= .并補(bǔ)全圖中的條形統(tǒng)計(jì)圖.
(2)請(qǐng)你估計(jì)該校約有多少名學(xué)生喜愛打乒乓球.
(3)在抽查的m名學(xué)生中,有A、B、C、D等10名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從A、B、C、D這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫樹狀圖法,求同時(shí)選中B、C的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開展此項(xiàng)活動(dòng),擬開展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書法,器樂,要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
請(qǐng)解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)在參加“剪紙”活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加“書法”項(xiàng)目活動(dòng)的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加“器樂”活動(dòng)項(xiàng)目的女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(﹣4,﹣4),則k的值為( )
A. 16B. ﹣3C. 5D. 5或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),連接DE.過點(diǎn)A作AF⊥DE,垂足為F,⊙O經(jīng)過點(diǎn)C、D、F,與AD相交于點(diǎn)G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長(zhǎng)為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k<0),經(jīng)過點(diǎn)(6,0),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點(diǎn).
(1)求直線的表達(dá)式;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn).記圖象G在點(diǎn)A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當(dāng)m=2時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo) ;
②若區(qū)域W內(nèi)恰有3個(gè)整數(shù)點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時(shí),y≥0,
其中正確的結(jié)論是(填寫代表正確結(jié)論的序號(hào))__________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com