某跑道的周長為400m且兩端為半圓形,要使矩形內(nèi)部操場的面積最大,直線跑道的長應(yīng)為多少?
設(shè)矩形直線跑道長為xm,矩形面積為ym2
由題意得:y=
400-2x
π
•x=
2
π
(-x2+200x)=-
2
π
(x-100)2+
20000
π
,
∵-
2
π
<0
∴當(dāng)x=100時(shí),y最大,
即直線跑道長應(yīng)為100m.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的交x軸于點(diǎn)A和點(diǎn)B(-2,0),與y軸的負(fù)半軸交于點(diǎn)C,且線段OC的長度是線段OA的2倍,拋物線的對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若過點(diǎn)(0,-5)且平行于x軸的直線與該拋物線交于M、N兩點(diǎn),以線段MN為一邊拋物線上與M、N不重合的任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,請你求出S關(guān)于點(diǎn)P的縱坐標(biāo)y的函數(shù)解析式;
(3)當(dāng)0<x≤
10
3
時(shí),(2)中的平行四邊形的面積是否存在最大值?若存在,請求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(4,0)、C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),試確定過O、P、D三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)E是(2)中所確定拋物線的頂點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長最小?求出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長;
(4)設(shè)點(diǎn)N是矩形OABC的對稱中心,是否存在點(diǎn)P,使∠CPN=90°?若存在,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的頂點(diǎn)為A(3,-3),與x軸的一個(gè)交點(diǎn)為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個(gè)動(dòng)點(diǎn),求使P到A、B兩點(diǎn)的距離之和最小的點(diǎn)P0的坐標(biāo).
(3)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為C.在拋物線上是否存在點(diǎn)M,使得△MBC的面積等于以點(diǎn)A、P0、B、C為頂點(diǎn)的四邊形面積的三分之一?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時(shí)m的值;
(3)若拋物線的對稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)E作EFBD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P從點(diǎn)A出發(fā),沿邊AB向點(diǎn)B以1厘米/秒的速度移動(dòng),同時(shí),Q點(diǎn)從B點(diǎn)出發(fā)沿邊BC向點(diǎn)C以2厘米/秒的速度移動(dòng),如果P、Q兩點(diǎn)分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng).據(jù)此解答下列問題:
(1)運(yùn)動(dòng)開始第幾秒后,△PBQ的面積等于8平方厘米;
(2)設(shè)運(yùn)動(dòng)開始后第t秒時(shí),五邊形APQCD的面積為S平方厘米,寫出S與t的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(3)求出S的最小值及t的對應(yīng)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對稱軸上一動(dòng)點(diǎn),求△APC周長的最小值;
(3)設(shè)D為拋物線上一點(diǎn),E為對稱軸上一點(diǎn),若以點(diǎn)A,B,D,E為頂點(diǎn)的四邊形是菱形,則點(diǎn)D的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=x2-4x+3與x軸分別交于A、B兩點(diǎn),交y軸于點(diǎn)C.
(1)求線段AC的長;
(2)求tan∠CBA的值;
(3)連接AC,試問在x軸左側(cè)否存在點(diǎn)Q,使得以C、O、Q為頂點(diǎn)的三角形和△OAC相似?如果存在,請直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用一段長為30m的籬笆圍出一個(gè)一邊靠墻的矩形菜園,墻長為18m.設(shè)矩形的一邊長為xm,面積為ym2
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)菜園的面積能否達(dá)到120m2?說明理由.

查看答案和解析>>

同步練習(xí)冊答案