【題目】如圖1,二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)A(3,0),B(0,4)兩點(diǎn),動(dòng)點(diǎn)P從A出發(fā),在線段AB上沿A→B的方向以每秒2個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P作PD⊥y于點(diǎn)D,交拋物線于點(diǎn)C.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).

(1)求二次函數(shù)y=﹣x2+bx+c的表達(dá)式;
(2)連接BC,當(dāng)t= 時(shí),求△BCP的面積;
(3)如圖2,動(dòng)點(diǎn)P從A出發(fā)時(shí),動(dòng)點(diǎn)Q同時(shí)從O出發(fā),在線段OA上沿O→A的方向以1個(gè)單位長度的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與B重合時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接DQ,PQ,將△DPQ沿直線PC折疊得到△DPE.在運(yùn)動(dòng)過程中,設(shè)△DPE和△OAB重合部分的面積為S,直接寫出S與t的函數(shù)關(guān)系及t的取值范圍.

【答案】
(1)

解:把A(3,0),B(0,4)代入y=﹣x2+bx+c中得:

解得

∴二次函數(shù)y=﹣x2+bx+c的表達(dá)式為:y=﹣x2+ x+4


(2)

解:如圖1,

當(dāng)t= 時(shí),AP=2t,

∵PC∥x軸,

,

∴OD= = × =

當(dāng)y= 時(shí), =﹣x2+ x+4,

3x2﹣5x﹣8=0,

x1=﹣1,x2= ,

∴C(﹣1, ),

,

則PD=2,

∴SBCP= ×PC×BD= ×3× =4


(3)

解:如圖3,

當(dāng)點(diǎn)E在AB上時(shí),

由(2)得OD=QM=ME=

∴EQ= ,

由折疊得:EQ⊥PD,則EQ∥y軸

,

,

∴t= ,

同理得:PD=3﹣ ,

∴當(dāng)0≤t≤ 時(shí),S=SPDQ= ×PD×MQ= ×(3﹣ )× ,

S=﹣ t2+ t;

當(dāng) <t≤2.5時(shí),

如圖4,

P′D′=3﹣ ,

點(diǎn)Q與點(diǎn)E關(guān)于直線P′C′對(duì)稱,則Q(t,0)、E(t, ),

∵AB的解析式為:y=﹣ x+4,

D′E的解析式為:y= x+ t,

則交點(diǎn)N( ),

∴S=SPDN= ×P′D′×FN= ×(3﹣ )( ),

∴S= t2 t+


【解析】(1)直接將A、B兩點(diǎn)的坐標(biāo)代入列方程組解出即可;(2)如圖1,要想求△BCP的面積,必須求對(duì)應(yīng)的底和高,即PC和BD;先求OD,再求BD,PC是利用點(diǎn)P和點(diǎn)C的橫坐標(biāo)求出,要注意符號(hào);(3)分兩種情況討論:①△DPE完全在△OAB中時(shí),即當(dāng)0≤t≤ 時(shí),如圖2所示,重合部分的面積為S就是△DPE的面積;②△DPE有一部分在△OAB中時(shí),當(dāng) <t≤2.5時(shí),如圖4所示,△PDN就是重合部分的面積S.本題是二次函數(shù)的綜合題,考查了利用待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式,并能利用方程組求出兩圖象的交點(diǎn),把方程和函數(shù)有機(jī)地結(jié)合在一起,使函數(shù)問題簡(jiǎn)單化;同時(shí)考查了分類討論的思想,這一思想在二次函數(shù)中經(jīng)常運(yùn)用,要熟練掌握;本題還與相似結(jié)合,利用相似三角形對(duì)應(yīng)邊的比來表示線段的長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一螞蟻從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位.其行走路線如圖.

(1)填寫下列各點(diǎn)的坐標(biāo):A4 , ),A8 , );

(2)點(diǎn)A4n1的坐標(biāo)(n是正整數(shù))為

(3)指出螞蟻從點(diǎn)A2013到點(diǎn)A2014的移動(dòng)方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為(  )

A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點(diǎn)P為正方形內(nèi)一動(dòng)點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點(diǎn)N,連結(jié)CM.

(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動(dòng)過程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長線上時(shí),AP⊥BN和AM=AN是否成立?(不需說明理由)
②是否存在滿足條件的點(diǎn)P,使得PC= ?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15,AC=9,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)省新課改精神,我是各校都開設(shè)了“知識(shí)拓展類”、“體藝特長類”、“實(shí)踐活動(dòng)類”三類拓展性課程,某校為了解在周二第六節(jié)開設(shè)的“體藝特長類”中各門課程學(xué)生的參與情況,隨機(jī)調(diào)查了部分學(xué)生作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的統(tǒng)計(jì)圖(部分信息未給出)
根據(jù)圖中信息,解答下列問題:
(1)求被調(diào)查學(xué)生的總?cè)藬?shù);
(2)若該校有200名學(xué)生參加了“體藝特長類”中的各門課程,請(qǐng)估計(jì)參加棋類的學(xué)生人數(shù);
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你給學(xué)校提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖,在△ABC中,∠ABC的平分線與∠ACB的平分線相交于點(diǎn)P.

(1)若∠ABC=50°,∠ACB=80°,則∠A=   度,∠P=   

(2)∠A∠P的數(shù)量關(guān)系為   ,并說明理由.

(應(yīng)用)如圖,在△ABC中,∠ABC的平分線與∠ACB的平分線相交于點(diǎn)P.∠ABC的外角平分線與∠ACB的外角平分線相交于點(diǎn)Q.直接寫出∠A∠Q的數(shù)量關(guān)系為   

查看答案和解析>>

同步練習(xí)冊(cè)答案