【題目】有五張正面分別寫有數(shù)字﹣3,﹣2,1, 2,3的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻后隨機抽取一張,以其正面的數(shù)字作為a的值,然后再從剩余的四張卡片中隨機抽取一張,以其正面的數(shù)字作為b的值,用列表法或樹狀圖法求點(a,b)在反比例函數(shù)y=圖象上的概率.

【答案】

【解析】

畫樹狀圖展示所有20種等可能的結(jié)果數(shù),再找出點(a,b)在反比例函數(shù)y=圖象上的結(jié)果數(shù),然后根據(jù)概率公式求解.

畫樹狀圖為:

所有可能出現(xiàn)的結(jié)果共有20個,這些結(jié)果出現(xiàn)的可能性相等,

點(a,b)在反比例函數(shù)y=圖象上的可能性有4個,分別是(﹣2,﹣3),(﹣3,﹣2),(2,3),(3,2),

∴點(a,b)在反比例函數(shù)y=圖象上的概率概率是P==

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC中,∠B、∠C平分線交于O點,過O點作EFBCAB、ACE、F.

1)猜想:EFBE、CF之間有怎樣的關(guān)系并說明理由

2)如圖②,若△ABC中∠B的平分線BE與三角形外角∠ACD平分線CE交于E,且AEBC,AE=13BC=24.求四邊形ABCE周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC=100°,MN、EF分別垂直平分AB、AC,則∠MAE的大小為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象過點A(0,3),且與反比例函數(shù)y=的圖象相交于B、C兩點.若AB=BC,則k1k2的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標為(2,3),點B的坐標為(n,1).

(1)求n的值,并結(jié)合圖象,直接寫出不等式<kx+b的解集;

(2)點Ex軸上一個動點,若SAEB=6,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,再完成練習

一般地,數(shù)軸上表示數(shù)x的點與原點的距離,叫做數(shù)x的絕對值,記作|x|.

|x|<3

x表示到原點距離小于3的數(shù),從如圖1所示的數(shù)軸上看:大于﹣3而小于3的數(shù),它們到原點距離小于3,所以|x|<3的解集是﹣3<x<3;

|x|>3

x表示到原點距離大于3的數(shù),從如圖2所示的數(shù)軸上看:小于﹣3的數(shù)或大于3的數(shù),它們到原點距離大于3,所以x3的解集是x﹣3或x>3

解答下面的問題:

(1)不等式|x|<5的解集為   ,不等式|x|>5的解集為 

(2)不等式|x|<m(m>0)的解集為   .不等式|x|>m(m0)的解集為   

(3)解不等式|x﹣3|<5.

(4)解不等式|x﹣5|>3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,∠A=30°,點P從點A出發(fā)以2m/s的速度沿折線A→C→B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設(shè)運動時間為x(s),APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示,下列結(jié)論中,錯誤的是(  )

A. α=1

B. sinB=

C. APQ面積的最大值為2

D. 2中圖象C2段的函數(shù)表達式為y=﹣x2+x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角中,,若想找一點P,使得互補,甲、乙、丙三人作法分別如下:

甲:以B為圓心,AB長為半徑畫弧交ACP點,則P即為所求;

乙:分別以BC為圓心,AB,AC長為半徑畫弧交于P點,則P即為所求;

丙:作BC的垂直平分線和的平分線,兩線交于P點,則P即為所求.

對于甲、乙、丙三人的作法,下列敘述正確的是  

A. 三人皆正確B. 甲、丙正確,乙錯誤

C. 甲正確,乙、丙錯誤D. 甲錯誤,乙、丙正確

查看答案和解析>>

同步練習冊答案